首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was done primarily to compare cation-ATPase dephosphorylation kinetics with a Cl(-)-ATPase's dephosphorylation kinetics because of the paucity of information in this area. Utilizing a proteoliposomal preparation containing Cl(-)-ATPase from Aplysia gut, it was demonstrated that dephosphorylation of this P-type ATPase was absolutely dependent upon Cl(-). Adenosine triphosphate (ATP) concentrations directly stimulated dephosphorylation of Cl(-)-ATPase in the presence of increasing concentrations of Cl(-). It was also shown that the calculated rate constant for E(1)-P disintegration was 20/sec. This rate constant value approximated E(1)-P rate constant disintegration values for other electrogenic, uniport P-type ATPases. Therefore, it was concluded from these results that the Cl(-)-ATPase dephosphorylation kinetics did not differ greatly from cation-ATPase dephosphorylation kinetics.  相似文献   

2.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

3.
The intrinsic fluorescence of sarcoplasmic reticulum vesicles was measured under conditions allowing ATPase phosphorylation from inorganic phosphate. Significant fluorescence enhancement of up to 4% resulted from gradient-independent enzyme phosphorylation at pH 6, in the absence of KCl. The equilibrium fluorescence data obtained at various magnesium and phosphate concentrations agree with a reaction scheme in which Mg2+, as direct activator, and free phosphate, as the true substrate, bind to the enzyme in random order to give a noncovalent ternary complex (Mg.*E.Pi), in equilibrium with the covalent phosphoenzyme (Mg.*E-P). The transient kinetics of the fluorescence rise was also studied, and the resulting data were generally consistent with the above scheme, assuming that binding reactions are fast compared to covalent phosphoenzyme formation. This, however, might be valid only as a first approximation. At 20 degrees C and pH 6, the phosphate concentration for half-maximum phosphorylation rate constant, at 20 mM magnesium, was higher than 20 mM. Similarly, the magnesium concentration for half-maximum phosphorylation rate constant, at 20 mM phosphate, was also higher than 20 mM. The maximum phosphorylation rate was faster than 25 s-1, and the phosphoenzyme hydrolysis rate constant was 1.5-2 s-1 under these conditions, so that the equilibrium constant between Mg.*E.Pi and Mg.*E-P largely favors the phosphoenzyme.  相似文献   

4.
Because of increased concern about surface water eutrophication from nutrient-enriched agricultural runoff, many swine producers are encouraged to decrease application rates of waste-based P. Precipitation and subsequent removal of magnesium ammonium phosphate (MgNH(4)PO(4) x 6H(2)O), commonly known as struvite, is a promising mechanism for N and P removal from anaerobic swine lagoon effluent. The objectives of this research were to (i) quantify the effects of adjusting pH and Mg:P ratio on struvite precipitation and (ii) determine the rate constant pH effect for struvite precipitation in anaerobic swine lagoon liquid. Concentrations of PO(4)-P in liquid from two anaerobic swine lagoons were determined after 24 h of equilibration for a pH range of 7.5-9.5 and Mg:P ratios between 1:1 and 1.6:1. Struvite formation reduced the PO(4)-P concentration in the effluents to as low as 2 mgl(-1). Minimum concentrations of PO(4)-P occurred between pH 8.9 and 9.25 at all Mg:P ratios. Struvite precipitation decreased PO(4)-P concentrations by 85% within 20 min at pH 9.0 for an initial Mg:P ratio of 1.2:1. The rate of PO(4)-P decrease was described by a first-order kinetic model, with rate constants of 3.7, 7.9, and 12.3 h(-1) at pH 8.4, 8.7 and 9.0 respectively. Our results indicate that induced struvite formation is a technically feasible method to remove N and P from swine lagoon liquid and it may allow swine producers to recover nutrients for off-farm sale.  相似文献   

5.
1. The 1-P-fructokinase (1-PFK) and 6-P-fructokinase (6-PFK) from Pseudmonas doudoroffii were partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. The pH optima of these enzymes were 9.0 and 8.5, respectively. 2. When the concentrations of the substrates of the 1-PFK reaction were varied, Michaelis-Menten kinetics were observed. The Kms for D-fructose-1-P (F-1-P) and ATP were 3.03 X 10(-4) M and 3.39 X 10(-4) M, respectively. Variation of MgCl2 at fixed concentrations of F-1-P and ATP resulted in sigmoidal kinetics; about 10 mM MgCl2 was necessary for maximal activity. Activity of 1-PFK was inhibited when the ratio of ATP:Mg++ was higher than 0.5, suggesting that ATP:2Mg++ was the substrate and that free ATP was inhibitory. Although an absolute requirement for K+ or NH4+ could not be demonstrated, these cations stimulated the rate of the reaction. Activity of 1-PFK was not significantly affected by 3 mM AMP, cyclic-AMP, Pi, D-fructose-6-P (F-6-P), ADP, P-enolpyruvate (PEP), pyruvate, citrate, or L-gluamate. 3. Sigmoidal kinetics were observed for 6-PFK when the concentration of F-6-P was increased and the level of ATP was kept constant. Activity of 6-PFK was increased by ADP, inhibited by PEP, and unaffected by 3 mM AMP, cyclic-AMP, Pi, F-1-P, pyruvate, or citrate.  相似文献   

6.
F Guillain  P Champeil  P D Boyer 《Biochemistry》1984,23(20):4754-4761
Pi phosphorylation of sarcoplasmic reticulum (SR) vesicles in the absence of Ca was reinvestigated. Theoretical analysis shows that, for various substrate concentrations, the time dependence of phosphoenzyme formation does not allow determination of an unambiguous reaction scheme or estimation of the stoichiometry of the reaction. To overcome this difficulty, we measured medium Pi oxygen exchange, [32P]-phosphoenzyme formation, and intrinsic fluorescence. We found that contrarily to the usual assumption the substrate binding step in the phosphorylation direction at pH 6.0, KCl = 0, and 23 degrees C is a slow process whose bimolecular rate constant is around 5 X 10(3) M-1 s-1 for both Mg and Pi binding. We confirm [Lacapère, J. J., Gingold, M. P., Champeil, P., & Guillain, F. (1981) J. Biol. Chem. 256, 2302-2306] that, in a second step, the establishment of a covalent bond between the bound Pi and the enzyme is formed with a rate constant greater than or equal to 20 s-1 whereas the dephosphorylation rate constant is 2-3 s-1. These results imply that under optimal conditions for phosphorylation, the enzyme is almost entirely phosphorylated at concentrations of 20 mM MgCl2 and 20 mM Pi. Study of the phosphorylation reaction under various experimental conditions shows that reduction of the phosphoenzyme level upon KCl addition is mainly due to the augmentation of the hydrolysis rate constant. In addition we propose that the strong inhibition by large amounts of MgCl2 is due to the formation of an E? . Mg complex unfit for phosphorylation by Pi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We studied conformational changes of purified renal sodium plus potassium ion-transport adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3) labeled with fluorescein isothiocyanate. Fluorescein covalently binds to the alpha-subunit of the enzyme and inhibits the ATPase but not the p-nitrophenylphosphatase activity. Four unphosphorylated and three phosphorylated conformations were distinguished by the level of fluorescence and by the rate of its change (relative fluorescence is shown in percentages). Fluorescence of the ligand-free form (E1, 100%) was increased by Na+ (E1.Na form, 103%) and quenched by K+ (E2.K, 78%) at a site of high affinity (K0.5 for K+ = 0.07 mM). Mg2+ did not alter fluorescence of E1 or E1.Na but raised that of E2.K (E2.K.Mg form, 85-90%). Addition of excess Na+ to the E2.K.Mg form restored high fluorescence but the rate of transition from E2.K.Mg to E1.Na became progressively slower with increasing Mg2+ concentration. Two phosphorylated conformations, (E2-P).Mg (82%) and (E2-P).Mg.K (82%) were differentiated by a faster turnover of the latter form. A third conformation, (E2-P).Mg.ouabain, had the lowest fluorescence (56%) and its formation allowed the binding of ouabain to the phosphoenzyme. Reversible blocking of sulfhydryl groups with thimerosal inhibited the formation of E2.K and (E2-P).Mg.ouabain but not that of the other conformations of the fluorescein-enzyme. The thimerosal-treated fluorescein-enzyme retained K+-p-nitrophenylphosphatase activity, inhibition of this activity by ouabain and ouabain binding. The unphosphorylated enzyme had low (K0.5 = 1.2 mM) and the phosphoenzyme had high affinity (K0.5 = 0.03 - 0.09 mM) for Mg2+ in the absence of nucleotides. Since low and high affinity for Mg2+ alternates as the enzyme turns over, Mg2+ may be bound and released sequentially during the catalytic cycle.  相似文献   

8.
ATPase activity of the plasma membrane fraction from primary roots of corn (Zea mays L. WF9 x M14) was activated by Mg(2+) and further stimulated by monovalent cations (K(+) > Rb(+) > Cs(+) > Na(+) > Li(+)). K(+)-stimulated activity required Mg(2+) and was substrate-specific. Maximum ATPase activity in the presence of Mg(2+) and K(+) was at pH 6.5 and 40 C. Calcium and lanthanum (<0.5 mm) were inhibitors of ATPase, but only in the presence of Mg(2+). Oligomycin was not an inhibitor of the plasma membrane ATPase, whereas N,N'-dicyclohexylcarbodiimide was. Activity showed a simple Michaelis-Menten saturation with increasing ATP.Mg. The major effect of K(+) in stimulating ATPase activity was on maximum velocity. The kinetic data of K(+) stimulation were complex, but similar to the kinetics of short term K(+) influx in corn roots. Both K(+)-ATPase and K(+) influx kinetics met all criteria for negative cooperativity. The results provided further support for the concept that cation transport in plants is energized by ATP, and mediated by a cation-ATPase on the plasma membrane.  相似文献   

9.
Fedosova NU  Champeil P  Esmann M 《Biochemistry》2003,42(12):3536-3543
Transient kinetic analysis of nucleotide binding to pig kidney Na,K-ATPase using a rapid filtration technique shows that the interaction between nucleotide and enzyme apparently follows simple first-order kinetics both for ATP in the absence of Mg(2+) and for ADP in the presence or absence of Mg(2+). Rapid filtration experiments with Na,K-ATPase membrane sheets may nevertheless suffer from a problem of accessibility for a fraction of the ATPase binding sites. Accordingly, we estimate from these data that for ATP binding in the absence of Mg(2+) and the presence of 35 mM Na(+) at pH 7.0 at 20 degrees C, the bimolecular binding rate constant k(on) is about 30 microM(-1) x s(-1) and the dissociation rate constant k(off) is about 8 s(-1). In the presence of 10 mM Mg(2+), the binding rate constant is the same as that in the absence of Mg(2+). For ADP or MgADP the binding rate constant is about 20 microM(-1) x s(-1) and the dissociation rate constant is about 12 s(-1). Results of rapid-mixing stopped-flow experiments with the fluorescent dye eosin are also consistent with a one-step mechanism of binding of eosin to the ATPase nucleotide site. The implication of these results is that nucleotide binding to Na,K-ATPase both in the absence and presence of Mg(2+) appears to be a single-step event, at least on the time scale accessible in these experiments.  相似文献   

10.
Phosphorylation of shark rectal Na,K-ATPase by ATP in the presence of Na(+) was characterized by chemical quench experiments and by stopped-flow RH421 fluorescence. The appearance of acid-stable phosphoenzyme was faster than the rate of fluorescence increase, suggesting that of the two acid-stable phosphoenzymes formed, RH421 exclusively detects formation of E(2)-P, which follows formation of E(1)-P. The stopped-flow RH421 fluorescence response to ATP phosphorylation was biphasic, with a major fast phase with k(obs) approximately 90 s(-1) and a minor slow phase with a k(obs) of approximately 9 s(-1) (20 degrees C, pH 7.4). The observed rate constants for both the slow and the fast phase could be fitted with identical second-degree functions of the ATP concentration with apparent binding constants of approximately 3.1 x 10(7) M(-1) and 1. 8 x 10(5) M(-1), respectively. Increasing [ADP] decreased k(obs) for the rate of the RH421 fluorescence response to ATP phosphorylation. This could be accounted for by the reaction of ADP with the initially formed E(1)-P followed by a conformational change to E(2)-P. The biphasic stopped-flow RH421 responses to ATP phosphorylation could be simulated, assuming that in the absence of K(+) the highly fluorescent E(2)-P is slowly transformed into the "K(+)-insensitive" E'(2)-P subconformation forming a side branch of the main cycle.  相似文献   

11.
Magnesium ions in the reaction medium at 37 degrees C increased up to 222 s-1 the kapp for phosphorylation by ATP of the Ca2(+)-ATPase of pig red cell membranes. This effect was observed after partial proteolysis with trypsin which makes the enzyme behave like the E1 conformer during phosphorylation. These findings lead to the conclusion that Mg2+ increased the rate of phosphorylation of the Ca2(+)-ATPase by acting directly on this reaction. The apparent dissociation constant of Mg2+ for this effect was 44 microM whereas the apparent dissociation constant for Mg2+ to accelerate the shift E2----E1 between conformers measured on the intact enzyme was 50 microM. This suggests that Mg2+ accelerated both reactions from a single class of site.  相似文献   

12.
The aim of the present study was to test simple reaction sequences which describe calcium-independent plus calcium-dependent phosphorylation of sarcoplasmic reticulum transport. ATPase by orthophosphate including the function of magnesium in phosphoenzyme formation. The reaction schemes considered were based on the reaction sequence for calcium-independent phosphorylation proposed previously; namely that the transport enzyme (E) forms a ternary complex (Mg . E . Pi), by random binding of free magnesium and free orthophosphate, which is in equilibrium with the magnesium-phosphoenzyme (Mg . E-P). Phosphorylation, performed at pH 7.0 20 degrees C and a constant free orthophosphate concentration using sarcoplasmic reticulum vesicles either unloaded or loaded passively with calcium in the presence of 5 mM or 40 mM CaCl2, resulted in a gradual decrease in the apparent magnesium half-saturation constant and an increase in maximum phosphoprotein formation with increasing calcium loads. When phosphorylation of sarcoplasmic reticulum vesicles preloaded in the presence of 5 mM CaCl2 was performed at a constant free magnesium concentration, a decrease in the apparent orthophosphate half-saturation constant and an increase in maximum phosphoprotein formation was observed as compared with vesicles from which calcium inside has been removed by ionophore X-537A plus EGTA treatment; however, both parameters remained unchanged by increasing free magnesium from 20 mM to 30 mM. When phosphorylation of sarcoplasmic reticulum vesicles passively loaded with calcium in the presence of 40 mM CaCl2, at which the saturation of the low-affinity calcium binding sites of the ATPase is presumably near maximum, was performed at increasing concentrations of free orthophosphate, there was a parallel shift of phosphoprotein formation as a function of free magnesium and vice versa, with no change in the maximum phosphoenzyme formation. Comparison of the experimental data with the pattern of phosphoprotein formation predicted from model equations for various theoretical possible reaction sequences suggests that phosphoenzyme formation from orthophosphate possesses the following features. Firstly, calcium present at the inside of the sarcoplasmic reticulum membrane binds to the free enzyme and in sequential order to E . Mg . Pi or Mg . E-P or to both, but neither to E. Mg nor to E . Pi. Secondly, calcium-independent and calcium-dependent phosphoproteins are magnesium-phosphoenzymes. Calcium-dependent phosphoenzyme is a magnesium-calcium-enzyme phosphate complex with 1 magnesium, 2 calciums and 1 orthophosphate (the last covalently) bound to the enzyme [Mg . E-P . (Cai)2], and not a 'calcium-phosphoprotein' without bound magnesium.  相似文献   

13.
Phosphoglucomutase is inhibited by a complex formed from alpha-D-glucose 1-phosphate (Glc-1-P) and inorganic vanadate (Vi). Both the inhibition at steady state and the rate of approach to steady state are dependent on the concentrations of both Glc-1-P and Vi. Inhibition is competitive versus alpha-D-glucose 1,6-bisphosphate (Glc-P2) and is ascribed to binding of the 6-vanadate ester of Glc-1-P (V-6-Glc-1-P) to the dephospho form of phosphoglucomutase (E). The inhibition constant for V-6-Glc-1-P at pH 7.4 was determined from steady-state kinetic measurements to be 2 x 10(-12) M. The first-order rate constant for approach to steady state increases hyperbolically with inhibitor concentration. The results are consistent with rapid equilibrium binding of V-6-Glc-1-P to E, with dissociation constant 1 x 10(-9) M, followed by rate-limiting conversion of the E.V-6-Glc-1-P complex to another species, E*.V-6-Glc-1-P, with first-order rate constant 4 x 10(-2)s-1. The rate constant determined for the reverse reaction, conversion of E*.V-6-Glc-1-P to E.V-6-Glc-1-P, is 2.5 x 10(-4)s-1. Formation of E*.V-6-Glc-1-P can also occur via binding of glucose 6-vanadate to the phospho form of phosphoglucomutase (E-P) followed by phosphoryl transfer and rearrangement of the enzyme-product complex.  相似文献   

14.
In the absence of ATP the sarcoplasmic reticulum ATPase (SERCA) binds two Ca(2+) with high affinity. The two bound Ca(2+) rapidly undergo reverse dissociation upon addition of EGTA, but can be distinguished by isotopic exchange indicating fast exchange at a superficial site (site II), and retardation of exchange at a deeper site (site I) by occupancy of site II. Site II mutations that allow high affinity binding to site I, but only low affinity binding to site II, show that retardation of isotopic exchange requires higher Ca(2+) concentrations with the N796A mutant, and is not observed with the E309Q mutant even at millimolar Ca(2+). Fluoroaluminate forms a complex at the catalytic site yielding stable analogs of the phosphoenzyme intermediate, with properties similar to E2-P or E1-P.Ca(2). Mutational analysis indicates that Asp(351), Lys(352), Thr(353), Asp(703), Asn(706), Asp(707), Thr(625), and Lys(684) participate in stabilization of fluoroaluminate and Mg(2+) at the phosphorylation site. In the presence of fluoroaluminate and Ca(2+), ADP (or AMP-PCP) favors formation of a stable ADP.E1-P.Ca(2) analog. This produces strong occlusion of Ca(2+) bound to both sites (I and II), whereby dissociation occurs very slowly even following addition of EGTA. Occlusion by fluoraluminate and ADP is not observed with the E309Q mutant, suggesting a gating function of Glu(309) at the mouth of a binding cavity with a single path of entry. This phenomenon corresponds to the earliest step of the catalytic cycle following utilization of ATP. Experiments on limited proteolysis reveal that a long range conformational change, involving displacement of headpiece domains and transmembrane helices, plays a mechanistic role.  相似文献   

15.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

16.
The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.  相似文献   

17.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

18.
Addition of up to 300 microM ATP in the presence of 2 M NaCl with MgCl2 to pig kidney Na+,K+-ATPase treated with N-[p-(2-benzimidazolyl)phenyl]maleimide seemed to be insufficient to saturate the rate of the fluorescence decrease. However, both the extent of the decrease and the amount of phosphoenzyme at a steady state were saturated below 20 microM ATP. Addition of Mg2+ with Na+ to the enzyme preincubated with 20 to 600 microM ATP gave nearly the same rate constant, which was below 50% of that obtained by adding 300 microM ATP to the Na+-form enzyme in the presence of Mg2+. High concentrations of ATP affected neither the rate of light-scattering change (Taniguchi, K. et al. (1986) J. Biol. Chem. 261, 3272-3281) after ADP-sensitive phosphoenzyme formation (E1P) nor that of the breakdown of E1P. A stoichiometric amount of [32P]Pi was liberated from [32P]E1P. The data suggested that ATP did not bind to E1P in such a way as to increase the extent of phosphorylation further or to accelerate dephosphorylation. The data also suggested that the reason for the large difference in the apparent affinity of ATP as evaluated from the rate and the extent of fluorescence change is the large dissociation constant for ATP of a Michaelis complex.  相似文献   

19.
Gibson GE  Harris BG  Cook PF 《Biochemistry》2006,45(7):2453-2460
Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate (F6P) to give fructose 1,6-bisphosphate (FBP) using MgATP as the phosphoryl donor. As the concentration of Mg(2+) increases above the concentration needed to generate the MgATP chelate complex, a 15-fold increase in the initial rate was observed at low MgATP. The effect of Mg(2+) is limited to V/K(MgATP), and initial rate studies indicate an equilibrium-ordered addition of Mg(2+) before MgATP. Isotope partitioning of the dPFK:MgATP complex indicates a random addition of MgATP and F6P at low Mg(2+), with the rate of release of MgATP from the central E:MgATP:F6P complex 4-fold faster than the net rate constant for catalysis. This can be contrasted with the ordered addition of MgATP prior to F6P at high Mg(2+). The addition of fructose 2,6-bisphosphate (F26P(2)) has no effect on the mechanism at low Mg(2+), with the exception of a 4-fold increase in the affinity of the enzyme for F6P. At high Mg(2+), F26P(2) causes the kinetic mechanism to become random with respect to MgATP and F6P and with MgATP released from the central complex half as fast as the net rate constant for catalysis. The latter is in agreement with previous studies [Gibson, G. E., Harris, B. G., and Cook, P. F. (1996) Biochemistry 35, 5451-5457]. The overall effect of Mg(2+) is a decrease in the rate of release of MgATP from the E:MgATP:F6P complex, independent of the concentration of F26P(2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号