首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis AU195 produces bacillomycin D, a cyclic lipopeptide that is an inhibitor of the aflatoxin producing fungus Aspergillus flavus. Sequence analysis of the bacillomycin D operon revealed four ORFs with the structural organization of the peptide synthetases. Disruption of ORF 2, which links the amino acid moiety to the b-amino fatty acid, resulted in the loss of antifungal activity. By comparing the sequence of bacillomycin D, iturin A and mycosubtilin operons, our results showed that intergenic module replacement have occurred between B. subtilis lipopeptide synthetases including the iturin family and the plipastatin and fengycin family.  相似文献   

2.
The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.  相似文献   

3.
Many peptide antibiotics in prokaryotes and lower eukaryotes are produced non-ribosomally by multi-enzyme complexes. Analysis of gene-derived amino acid sequences of some peptide synthetases of bacterial and fungal origins revealed a high degree of conservation (35-50% identity). The genes encoding those peptide synthetases are clustered into large operons with repetitive domains (about 600 amino acids), in the case of synthetases activating more than one amino acid. We used two 35-mer oligonucleotides derived from two highly conserved regions of known peptide synthetases to identify the surfactin synthetase operon in Bacillus subtilis ATCC 21332, a strain not accessible to genetic manipulation. We show that the derived oligonucleotides can be used not only for the identification of unknown peptide synthetase genes by hybridization experiments but also in sequencing reactions as primers to identify internal domain sequences. Using this method, a 25.8-kb chromosomal DNA fragment bearing a part of the surfactin biosynthesis operon was cloned and partial sequences of two internal domains were obtained.  相似文献   

4.
Environmentally friendly control measures are needed for suppression of soilborne pathogens of vegetable crops in the Republic of Korea. In vitro challenge assays were used to screen approximately 500 bacterial isolates from 20 Korean greenhouse soils for inhibition of diverse plant pathogens. One isolate, Bacillus subtilis ME488, suppressed the growth of 39 of 42 plant pathogens tested. Isolate ME488 also suppressed the disease caused by Fusarium oxysporum f. sp. cucumerinum on cucumber and Phytophthora capsici on pepper in pot assays. Polymerase chain reaction was used to screen isolate ME488 for genes involved in biosynthesis of 11 antibiotics produced by various isolates of B. subtilis. Amplicons of the expected sizes were detected for bacD and bacAB, ituC and ituD, and mrsA and mrsM involved in the biosynthesis of bacilysin, iturin, and mersacidin, respectively. The identity of these genes was confirmed by DNA sequence analysis of the amplicons. Bacilysin and iturin were detected in culture filtrates from isolate ME488 by gas chromatography coupled with mass spectroscopy and by thin layer chromatography, respectively. Detection of mersacidin in ME488 culture filtrates was not attempted. Experiments reported here indicate that B. subtilis ME488 has potential for biological control of pathogens of cucumber and pepper possibly due to the production of antibiotics.  相似文献   

5.
The combinatorial reorganization of distinct modules of multimodular peptide synthetases is of increasing interest for the generation of new peptides with optimized bioactive properties. Each module is at least composed of enzymatic domains responsible for the adenylation, thioester formation, and condensation of an amino acid residue of the final peptide product. We analyzed various possible fusion sites for the recombination of peptide synthetases and evaluated the impact of different recombination strategies on the amino acid adenylation and acyl-thioester formation activities of peptide synthetase modules. Hybrid bimodular peptide synthetases were generated by recombination of the corresponding reading frames encoding for L-glutamic acid- and L-leucine-specific modules of surfactin synthetase SrfA-A at presumed inner- and intradomainic regions. We demonstrate that fusions at a previously postulated hinge region, dividing the amino acid adenylating domains of peptide synthetase modules into two subdomains, and at the highly conserved 4'-phosphopantetheine binding motif in acyl-thioester forming domains resulted in enzymatically active hybrid domains. By contrast, most manipulations in condensation domains like deletions, the complete exchange or the construction of chimeric domains considerably reduced or completely abolished the amino acid adenylation and thioester formation activity of the hybrid module.  相似文献   

6.
Abstract The multi-enzyme system responsible for the biosynthesis of iturin, an antifungal lipopeptide of Bacillus subtilis , was partially purified by chromatography on different affigels. In the wild-type strain, two subunits of the iturin synthetase (ITs and ITagp) were characterized: ITs activated only l-Ser, one of the iturin amino acid components, and ITagp activated l-Asn, d-Asn, l-Gln and l-Pro, amino acids corresponding to a partial sequence of iturin. In an iturin deficient mutant, the activity of the ITagp subunit was modified.  相似文献   

7.
8.
9.
10.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

11.
Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.   总被引:9,自引:5,他引:4       下载免费PDF全文
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.  相似文献   

12.
13.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

14.
15.
The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.  相似文献   

16.
利用BLAST从B.cereus ATCC14579的基因组中找到一段与枯草芽孢杆茵核黄素操纵子具有较高相似性的4.6kb大小的基因组DNA片段,该片段中含有完整的核黄素操纵子。该操纵子结构基因的编码产物的氨基酸序列与枯草芽孢杆菌核黄素操纵子相应结构基因的编码产物的氨基酸序列具有99%的同源性。该片段被克隆到大肠杆茵一枯草芽孢杆茵穿梭载体pHP13M中。表达分析的结果表明B.cereus ATCC14579核黄素操纵子可在大肠杆茵和枯草芽孢杆菌中表达。利用PCR方法用来自枯草杆菌的sac B基因的启动子替换B.cereus ATCC14579核黄素操纵子原有的启动子使其更好表达。替换启动子后的核黄素操纵子在本文使用的发酵条件下有较好的表达,核黄素产量从39.5mg/L增加到61.7mg/L.  相似文献   

17.
ABSTRACT: BACKGROUND: Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a beta-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. RESULTS: A potential pelgipeptin synthetase gene cluster (plp) was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPS), with one, seven, and one module(s), respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1) provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. CONCLUSIONS: In this study, a gene cluster (plp) responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.  相似文献   

18.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

19.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

20.
Recently, the solved crystal structure of a phenylalanine-activating adenylation (A) domain enlightened the structural basis for the specific recognition of the cognate substrate amino acid in nonribosomal peptide synthetases (NRPSs). By adding sequence comparisons and homology modeling, we successfully used this information to decipher the selectivity-conferring code of NRPSs. Each codon combines the 10 amino residues of a NRPS A domain that are presumed to build up the substrate-binding pocket. In this study, the deciphered code was exploited for the first time to rationally alter the substrate specificity of whole NRPS modules in vitro and in vivo. First, the single-residue Lys239 of the L-Glu-activating initiation module C-A(Glu)-PCP of the surfactin synthetase A was mutated to Gln239 to achieve a perfect match to the postulated L-Gln-activating binding pocket. Biochemical characterization of the mutant protein C-A(Glu)-PCP(Lys239 --> Gln) revealed the postulated alteration in substrate specificity from L-Glu to L-Gln without decrease in catalytic efficiency. Second, according to the selectivity-conferring code, the binding pockets of L-Asp and L-Asn-activating A domains differs in three positions: Val299 versus Ile, His322 versus Glu, and Ile330 versus Val, respectively. Thus, the binding pocket of the recombinant A domain AspA, derived from the second module of the surfactin synthetases B, was stepwisely adapted for the recognition of L-Asn. Biochemical characterization of single, double, and triple mutants revealed that His322 represents a key position, whose mutation was sufficient to give rise to the intended selectivity-switch. Subsequently, the gene fragment encoding the single-mutant AspA(His322 --> Glu) was introduced back into the surfactin biosynthetic gene cluster. The resulting Bacillus subtilis strain was found to produce the expected so far unknown lipoheptapeptide [Asn(5)]surfactin. This indicates that site-directed mutagenesis, guided by the selectivity-conferring code of NRPS A domains, represents a powerful alternative for the genetic manipulation of NRPS biosynthetic templates and the rational design of novel peptide antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号