首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In the perfect integrate-and-fire model (PIF), the membrane voltage is proportional to the integral of the input current since the time of the previous spike. It has been shown that the firing rate within a noise free ensemble of PIF neurons responds instantaneously to dynamic changes in the input current, whereas in the presence of white noise, model neurons preferentially pass low frequency modulations of the mean current. Here, we prove that when the input variance is perturbed while holding the mean current constant, the PIF responds preferentially to high frequency modulations. Moreover, the linear filters for mean and variance modulations are complementary, adding exactly to one. Since changes in the rate of Poisson distributed inputs lead to proportional changes in the mean and variance, these results imply that an ensemble of PIF neurons transmits a perfect replica of the time-varying input rate for Poisson distributed input. A more general argument shows that this property holds for any signal leading to proportional changes in the mean and variance of the input current.  相似文献   

2.
RV Florian 《PloS one》2012,7(8):e40233
In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.  相似文献   

3.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

4.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

5.
The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we show that potassium induced depolarization underlies the formation of noise-induced patterns such as delayed firing and synchronization. These phenomena are associated with the appearance of new time scales in the distribution of interspike intervals that may be significant for the spatio-temporal oscillations in neuronal ensembles.  相似文献   

6.
Phase response curves (PRCs) have been widely used to study synchronization in neural circuits comprised of pacemaking neurons. They describe how the timing of the next spike in a given spontaneously firing neuron is affected by the phase at which an input from another neuron is received. Here we study two reciprocally coupled clusters of pulse coupled oscillatory neurons. The neurons within each cluster are presumed to be identical and identically pulse coupled, but not necessarily identical to those in the other cluster. We investigate a two cluster solution in which all oscillators are synchronized within each cluster, but in which the two clusters are phase locked at nonzero phase with each other. Intuitively, one might expect this solution to be stable only when synchrony within each isolated cluster is stable, but this is not the case. We prove rigorously the stability of the two cluster solution and show how reciprocal coupling can stabilize synchrony within clusters that cannot synchronize in isolation. These stability results for the two cluster solution suggest a mechanism by which reciprocal coupling between brain regions can induce local synchronization via the network feedback loop.  相似文献   

7.
When a population spike (pulse-packet) propagates through a feedforward network with random excitatory connections, it either evolves to a sustained stable level of synchronous activity or fades away (Diesmann et al. in Nature 402:529-533 1999; Cateau and Fukai Neur Netw 14:675-685 2001). Here I demonstrate that in the presence of noise, the probability of the survival of the pulse-packet (or, equivalently, the firing rate of output neurons) reflects the intensity of the input. Furthermore, inhibitory coupling between layers can result in quasi- periodic alternation between several levels of firing activity. These results are obtained by analyzing the evolution of pulse-packet activity as a Markov chain. For the Markov chain analysis, the output of the chain is a linear mapping of the input into a lower-dimensional space, and the eigenvalues and eigenvectors of the transition matrix determine the dynamics of the evolution. Synchronous propagation of firing activity in successive pools of neurons are simulated in networks of integrate-and-fire and compartmental model neurons, and, consistent with the discrete Markov process, the activation of each pool is observed to be predominantly dependent upon the number of cells that fired in the previous pool. Simulation results agree with the numerical solutions of the Markov model. When inhibitory coupling between layers are included in the Markov model, some eigenvalues become complex numbers, implying oscillatory dynamics. The quasiperiodic dynamics is validated with simulation with leaky integrate-and-fire neurons. The networks demonstrate different modes of quasiperiodic activity as the inhibition or excitation parameters of the network are varied.  相似文献   

8.
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.  相似文献   

9.
Rhythmic, synchronous firing of groups of neurons is associated with behaviorally relevant states, and it is thus of interest to understand the mechanisms by which synchronization may be achieved. In hippocampal slice preparations, networks of excitatory and inhibitory neurons have been seen to synchronize when strong stimulation is applied at separated sites between which any coupling must be subject to a significant axonal delay. We extend previous work on synchronization in a model system based on the network architecture of these hippocampal slices. Our new analysis addresses the effects of heterogeneous populations and noisy inputs on the stability of synchronous solutions in the system. We find that, with experimentally motivated constraints on the coupling strength, sufficiently large heterogeneity in the input currents renders synchrony unstable. The addition of noise, however, restores stable near-synchrony. We analytically reduce the high-dimensional biophysical equations for the full population to a simple three-dimensional map, and show that the map's stability properties correctly predict both the loss of stability and the restabilizing effect of the noise.  相似文献   

10.
We examine the effects of stochastic input currents on the firing behaviour of two coupled Type 1 or Type 2 neurons. In Hodgkin–Huxley model neurons with standard parameters, which are Type 2, in the bistable regime, synaptic transmission can initiate oscillatory joint spiking, but white noise can terminate it. In Type 1 cells (models), typified by a quadratic integrate and fire model, synaptic coupling can cause oscillatory behaviour in excitatory cells, but Gaussian white noise can again terminate it. We locally determine an approximate basin of attraction, of the periodic orbit and explain the firing behaviour in terms of the effects of noise on the probability of escape of trajectories from   相似文献   

11.
We investigate how synchrony can be generated or induced in networks of electrically coupled integrate-and-fire neurons subject to noisy and heterogeneous inputs. Using analytical tools, we find that in a network under constant external inputs, synchrony can appear via a Hopf bifurcation from the asynchronous state to an oscillatory state. In a homogeneous net work, in the oscillatory state all neurons fire in synchrony, while in a heterogeneous network synchrony is looser, many neurons skipping cycles of the oscillation. If the transmission of action potentials via the electrical synapses is effectively excitatory, the Hopf bifurcation is supercritical, while effectively inhibitory transmission due to pronounced hyperpolarization leads to a subcritical bifurcation. In the latter case, the network exhibits bistability between an asynchronous state and an oscillatory state where all the neurons fire in synchrony. Finally we show that for time-varying external inputs, electrical coupling enhances the synchronization in an asynchronous network via a resonance at the firing-rate frequency.
Srdjan OstojicEmail:
  相似文献   

12.
Global and local synchrony of coupled neurons in small-world networks   总被引:8,自引:0,他引:8  
Synchronous firing of neurons is thought to play important functional roles such as feature binding and switching of cognitive states. Although synchronization has mainly been investigated so far using model neurons with simple connection topology, real neural networks have more complex structures. Here we examine the behavior of pulse-coupled leaky integrate-and-fire neurons with various network structures. We first show that the dispersion of the number of connections for neurons influences dynamical behavior even if other major topological statistics are kept fixed. The rewiring probability parameter representing the randomness of networks bridges two spatially opposite frameworks: precise local synchrony and rough global synchrony. Finally, cooperation of the global connections and the local clustering property, which is prominent in small-world networks, inforces synchrony of distant neuronal groups receiving coherent inputs.Acknowledgments. We thank M. Watanabe, Y. Tsubo, and\linebreak C. van Leeuwen for helpful discussions. This work is partially supported by the Japan Society for the Promotion of Science and by the Advanced and Innovational Research program in Life Sciences and a Grant-in-Aid no. 15016023 on priority areas (C) Advanced Brain Science Project from the Ministry of Education, Culture, Sports, Science, and Technology, the Japanese Government.  相似文献   

13.
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation.  相似文献   

14.
 In a feedforward network of integrate-and-fire neurons, where the firing of each layer is synchronous (synfire chain), the final firing state of the network converges to two attractor states: either a full activation or complete fading of the tailing layers. In this article, we analyze various modes of pattern propagation in a synfire chain with random connection weights and delta-type postsynaptic currents. We predict analytically that when the input is fully synchronized and the network is noise free, varying the characteristics of the weights distribution would result in modes of behavior that are different from those described in the literature. These are convergence to fixed points, limit cycles, multiple periodic, and possibly chaotic dynamics. We checked our analytic results by computer simulation of the network, and showed that the above results can be generalized when the input is asynchronous and neurons are spontaneously active at low rates. Received: 27 July 2001 / Accepted in revised form: 23 October 2001  相似文献   

15.
16.
Extracellular recordings of single neurons in primary and secondary somatosensory cortices of monkeys in vivo have shown that their firing rate can increase, decrease, or remain constant in different cells, as the external stimulus frequency increases. We observed similar intrinsic firing patterns (increasing, decreasing or constant) in rat somatosensory cortex in vitro, when stimulated with oscillatory input using conductance injection (dynamic clamp). The underlying mechanism of this observation is not obvious, and presents a challenge for mathematical modelling. We propose a simple principle for describing this phenomenon using a leaky integrate-and-fire model with sinusoidal input, an intrinsic oscillation and Poisson noise. Additional enhancement of the gain of encoding could be achieved by local network connections amongst diverse intrinsic response patterns. Our work sheds light on the possible cellular and network mechanisms underlying these opposing neuronal responses, which serve to enhance signal detection.  相似文献   

17.
The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular, it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks.  相似文献   

18.
A neuron receives input from other neurons via electrical pulses, so-called spikes. The pulse-like nature of the input is frequently neglected in analytical studies; instead, the input is usually approximated to be Gaussian. Recent experimental studies have shown, however, that an assumption underlying this approximation is often not met: Individual presynaptic spikes can have a significant effect on a neuron’s dynamics. It is thus desirable to explicitly account for the pulse-like nature of neural input, i.e. consider neurons driven by a shot noise – a long-standing problem that is mathematically challenging. In this work, we exploit the fact that excitatory shot noise with exponentially distributed weights can be obtained as a limit case of dichotomous noise, a Markovian two-state process. This allows us to obtain novel exact expressions for the stationary voltage density and the moments of the interspike-interval density of general integrate-and-fire neurons driven by such an input. For the special case of leaky integrate-and-fire neurons, we also give expressions for the power spectrum and the linear response to a signal. We verify and illustrate our expressions by comparison to simulations of leaky-, quadratic- and exponential integrate-and-fire neurons.  相似文献   

19.
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.  相似文献   

20.
An analytical approach is presented for determining the response of a neuron or of the activity in a network of connected neurons, represented by systems of nonlinear ordinary stochastic differential equations—the Fitzhugh-Nagumo system with Gaussian white noise current. For a single neuron, five equations hold for the first- and second-order central moments of the voltage and recovery variables. From this system we obtain, under certain assumptions, five differential equations for the means, variances, and covariance of the two components. One may use these quantities to estimate the probability that a neuron is emitting an action potential at any given time. The differential equations are solved by numerical methods. We also perform simulations on the stochastic Fitzugh-Nagumo system and compare the results with those obtained from the differential equations for both sustained and intermittent deterministic current inputs withsuperimposed noise. For intermittent currents, which mimic synaptic input, the agreement between the analytical and simulation results for the moments is excellent. For sustained input, the analytical approximations perform well for small noise as there is excellent agreement for the moments. In addition, the probability that a neuron is spiking as obtained from the empirical distribution of the potential in the simulations gives a result almost identical to that obtained using the analytical approach. However, when there is sustained large-amplitude noise, the analytical method is only accurate for short time intervals. Using the simulation method, we study the distribution of the interspike interval directly from simulated sample paths. We confirm that noise extends the range of input currents over which (nonperiodic) spike trains may exist and investigate the dependence of such firing on the magnitude of the mean input current and the noise amplitude. For networks we find the differential equations for the means, variances, and covariances of the voltage and recovery variables and show how solving them leads to an expression for the probability that a given neuron, or given set of neurons, is firing at time t. Using such expressions one may implement dynamical rules for changing synaptic strengths directly without sampling. The present analytical method applies equally well to temporally nonhomogeneous input currents and is expected to be useful for computational studies of information processing in various nervous system centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号