首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
M P Heyn  C Dudda  H Otto  F Seiff  I Wallat 《Biochemistry》1989,28(23):9166-9172
X-ray diffraction measurements show that in contrast to the purple membrane, the bacteriorhodopsin molecules are not organized in a hexagonal lattice in the deionized blue membrane. Addition of Ca2+ restores both the purple color and the normal (63 A) hexagonal protein lattice. In the blue state, the circular dichroism spectrum in the visible has the typical exciton features indicating that a trimeric structure is retained. Time-resolved linear dichroism measurements show that the blue patch rotates in aqueous suspension with a mean correlation time of 11 ms and provide no evidence for rotational mobility of bacteriorhodopsin within the membrane. The circular dichroism spectra of the blue and the Ca2+-regenerated purple state in the far-UV are different, indicating a small change in secondary structure. The thermal stability of the blue membrane is much smaller than that of the purple membrane. At pH 5.0, the irreversible denaturation transition of the blue form has a midpoint at 61 degrees C. The photocycle of the blue membrane (lambda ex 590 nm) has an L intermediate around 540 nm whose decay is slowed down into the millisecond time range (5 ms). Light-dark adaptation in the blue membrane is rapid with an exponential decay time of 38 s at 25 degrees C. The purple to blue transition apparently involves a conformational change in the protein leading to a change in the aggregation state from a highly ordered and stable hexagonal lattice to a disordered array of thermally more labile trimers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The structure of the photoreceptor unit of Rhodopseudomonas viridis   总被引:7,自引:2,他引:5       下载免费PDF全文
The thylakoid membrane of Rhodopseudomonas viridis contains extensive, regular arrays of photoreceptor complexes arranged on a hexagonal lattice with a repeat distance of ˜130 Å. Single membrane sheets were obtained by mild treatment of the thylakoid fraction with the detergent Triton X-100. Heavy metal shadowing and electron microscopy of isolated thylakoids indicated a strong asymmetry of the membrane, showing a smooth plasmic and a rough exoplasmic side. Fourier processing of rotary-shadowed specimens showed the different surface relief on both sides of the membrane. Structural units on both sides were roughly circular and showed 6-fold symmetry at a resolution close to 20 Å. The structural unit was characterised by a central core that seemed to extend through the membrane, protruding on the exoplasmic side. The core was surrounded by a ring showing 12 subunits on the plasmic side. Rotary-shadowed as well as negatively-stained membranes indicated a handedness of the structure. Treatment of thylakoid vesicles with higher detergent concentrations yielded a fraction of particles showing the same features as Fourier maps of the structural units. The isolated particles therefore appeared to represent structurally intact units of photosynthesis.  相似文献   

3.
The membrane protein bacteriorhodopsin was imaged in buffer solution at room temperature with the atomic force microscope. Three different substrates were used: mica, silanized glass and lipid bilayers. Single bacteriorhodopsin molecules could be imaged in purple membranes adsorbed to mica. A depression was observed between the bacteriorhodopsin molecules. The two dimensional Fourier transform showed the hexagonal lattice with a lattice constant of 6.21 +/- 0.20 nm which is in agreement with results of electron diffraction experiments. Spots at a resolution of approximately 1.1 nm could be resolved. A protein, cationic ferritin, could be imaged bound to the purple membranes on glass which was silanized with aminopropyltriethoxysilane. This opens the possibility of studying receptor/ligand binding under native conditions. In addition, purple membranes bound to a lipid bilayer were imaged. These images may help in interpreting results of functional studies done with purple membranes adsorbed to black lipid membranes.  相似文献   

4.
Thermal unfolding experiments on bacteriorhodopsin in mixed phospholipid/detergent micelles were performed. Bacteriorhodopsin was extracted from the purple membrane in a denatured state and then renatured in the micellar system. The purpose of this study was to compare the changes, if any, in the structure and stability of a membrane protein that has folded in a nonnative environment with results obtained on the native system, i.e., the purple membrane. The purple membrane crystalline lattice is an added factor that may influence the structural stability of bacteriorhodopsin. Micelles containing bacteriorhodopsin are uniformly sized disks 105 +/- 13 A in diameter (by electron microscopy) and have an estimated molecular mass of 210 kDa (by gel filtration HPLC). The near-UV CD spectra (which is indicative of tertiary structure) for micellar bacteriorhodopsin and the purple membrane are very similar. In the visible CD region of retinal absorption, the double band seen in the spectrum of the purple membrane is replaced with a broad positive band for micellar bacteriorhodopsin, indicating that in micelles, bacteriorhodopsin is monomeric. The plot of denaturational temperature vs. pH for micellar bacteriorhodopsin is displaced downward on the temperature axis, illustrating the lower thermal stability of micellar bacteriorhodopsin when compared to the purple membrane at the same pH. Even though micellar bacteriorhodopsin is less stable, similar changes in response to pH and temperature are seen in the visible absorption spectra of micellar bacteriorhodopsin and the purple membrane. This demonstrates that changes in the protonation state or temperature have a similar affect on the local environment of the chromophore and the protein conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This study aims to investigate bacteriorhodopsin (bR) molecules reconstituted in lipid bilayers composed of di(nonafluorotetradecanoyl)-phosphatidylcholine (F4-DMPC), a partially fluorinated analogue of dimyristoyl-phosphatidylcholine (DMPC) to clarify the effects of partially fluorinated hydrophobic chains of lipids on protein's stability. Calorimetry measurements showed that the chain-melting transition of F4-DMPC/bR systems occurs at 3.5 °C, whereas visible circular dichroism (CD) and X-ray diffraction measurements showed that a two-dimensional (2D) hexagonal lattice formed by bR trimers in F4-DMPC bilayers remains intact even above 30 °C, similar to bR in a native purple membrane. Complete dissociation of the trimers into the monomers detected by visible CD almost coincides with the complete melting of 2D lattice observed by X-ray diffraction, in which both take place at around 65 °C (10 °C lower than that for bR in a native purple membrane). However, it is extremely high in comparison with the bR reconstituted in DMPC bilayers in which the dissociation of bR trimer in DMPC bilayers occurs near the chain-melting transition temperature of DMPC bilayers at approximately 18 °C. In order to explore the rationale behind the difference in stability, a further investigation of the detailed structural features of pure F4-DMPC bilayers was performed by analyzing the lamellar diffraction data using simple electron density models. The results suggested that the perfluoroalkyl groups do not exhibit any conformation change even if the chain-melting transition occurs, which is likely to contribute to the stability of the 2D hexagonal lattice formed by the bR trimers.  相似文献   

6.
The combination of high-resolution tantalum/tungsten (Ta/W) shadowing at very low specimen temperature (-250 degrees C) under ultrahigh vacuum (less than 2 x 10(-9) mbar) with circular harmonic image averaging revealed details on the surface structure of mitochondrial creatine kinase (Mi-CK) molecules with a resolution less than 2.5 nm. Mi-CK octamers exhibit a cross-like surface depression dividing the square shaped projection of 10 x 10 nm into four equally sized subdomains, which correspond to the four dimers forming the octameric Mi-CK molecule. By a combination of positive staining (with uranyl acetate) and heavy metal shadowing, internal structures as well as the surface relief of Mi-CK were visualized at the same time at high resolution. Computational image analysis revealed only a single projection class of molecules, but the ability of Mi-CK to form linear filaments, as well as geometrical considerations concerning the formation of octamers by four equal, asymmetric dimers, suggest the existence of at least two distinct faces on the molecule. By image processing of Mi-CK filaments a side view of the octamer differing from the top-bottom projections of single molecules became evident showing a funnel-like access each form the top and bottom of the octamer connected by a central channel. The general structure of the Mi-CK octamer described here is relevant to the localization of the molecule at the inner-outer mitochondrial contact sites and to the function of Mi-CK as an "energy channeling" molecule.  相似文献   

7.
Crystals of heavy riboflavin synthase from Bacillus subtilis were freeze-etched and vacuum-coated at normal incidence with 0.1 to 0.4 nm of gold and silver, respectively. This decoration technique was applied to probe the protein surface for preferential nucleation sites. Image processing of the electron micrographs revealed two particular decoration sites for silver and a different one for gold. According to X-ray crystallography, the riboflavin synthase molecules are spherical and smooth except for a surface corrugation of less than 1 nm, which can not be depicted by heavy-metal shadowing. Thus the decoration sites represent sites of specific physical-chemical interactions between the condensing metal and the protein. The decoration pattern correctly reflects the icosahedral symmetry of the almost spherical protein molecules. Owing to the molecule's symmetry, the position of these topochemical sites with respect to the symmetry axes can be localized within 5A. The packing of the molecules in the crystal can be directly observed on shadowed replicas. Only decoration, however, makes it possible to observe the exact orientation of the molecules within the crystal planes and to derive the true lattice constant along the 6-fold screw axis. This proves decoration to be a technique suitable for studying crystal packing and the molecular symmetry of protein complexes at high resolution. The technique can be applied to crystals that are not large enough or insufficiently ordered for X-ray crystallography.  相似文献   

8.
The surface topography of opened-up microtubule walls (sheets) decorated with monomeric and dimeric kinesin motor domains was investigated by freeze-drying and unidirectional metal shadowing. Electron microscopy of surface-shadowed specimens produces images with a high signal/noise ratio, which enable a direct observation of surface features below 2 nm detail. Here we investigate the inner and outer surface of microtubules and tubulin sheets with and without decoration by kinesin motor domains. Tubulin sheets are flattened walls of microtubules, keeping lateral protofilament contacts intact. Surface shadowing reveals the following features: (i) when the microtubule outside is exposed the surface relief is dominated by the bound motor domains. Monomeric motor constructs generate a strong 8 nm periodicity, corresponding to the binding of one motor domain per alpha-beta-tubulin heterodimer. This surface periodicity largely disappears when dimeric kinesin motor domains are used for decoration, even though it is still visible in negatively stained or frozen hydrated specimens. This could be explained by disorder in the binding of the second (loosely tethered) kinesin head, and/or disorder in the coiled-coil tail. (ii) Both surfaces of undecorated sheets or microtubules, as well as the inner surface of decorated sheets, reveal a strong 4 nm repeat (due to the periodicity of tubulin monomers) and a weak 8 nm repeat (due to slight differences between alpha- and beta-tubulin). The differences between alpha- and beta-tubulin on the inner surface are stronger than expected from cryo-electron microscopy of unstained microtubules, indicating the existence of tubulin subdomain-specific surface properties that reflect the surface corrugation and hence metal deposition during evaporation. The 16 nm periodicity visible in some negatively stained specimens (caused by the pairing of cooperatively bound kinesin dimers) is not detected by surface shadowing.  相似文献   

9.
Colloidal gold labeling in conjunction with silver enhancement was investigated as a labeling technique for photoelectron microscopy (PEM). PEM uses UV-stimulated electron emission to image uncoated cell surfaces, and markers for cell surfaces need to be sufficiently photoemissive to be clearly visible against this background. Label contrast provided by 6 nm or 20 nm colloidal gold markers alone was compared to that provided by 6 nm markers after silver enhancement, using both direct and indirect labeling methods for fibronectin on human fibroblast cell surfaces. In all cases, details of the fibrillar fibronectin labeling distribution which were barely discernible before silver enhancement became highly visible against the cellular surface features. Two factors evidently contribute to the pronounced increase in label contrast with silver enhancement: (1) Increased particle size, which was documented by transmission electron microscopy, and (2) increased photoemission resulting from a silver coating on the enhanced gold markers, compared with the protein coating on the unenhanced gold markers. These data demonstrate that silver enhancement of colloidal gold labeling patterns in PEM images is a highly effective method for localization of specific sites on cell surfaces.  相似文献   

10.
Yokoyama Y  Sonoyama M  Mitaku S 《Proteins》2004,54(3):442-454
Heterogeneity in the state of bacteriorhodopsin in purple membrane was studied through temperature jump experiments carried out in darkness and under illumination with visible light. The thermal denaturation, the irreversible component of spectral change at high temperature, had two decay components, suggesting that bacteriorhodopsin in purple membrane has heterogeneous stability. The temperature dependence of kinetic parameters under illumination revealed that the fast-decay component gradually increased at above 60 degrees C, indicating that the proportion of unstable bacteriorhodopsin increased. Significant change in the visible circular dichroism (CD) spectra was observed in darkness in the same temperature range as the increase of the fast-decay component under illumination. Denaturation experiments for C-terminal-cleaved bacteriorhodopsin showed that the C-terminal segment had some effect on the structural stability of bacteriorhodopsin under illumination. Dynamic and static models of the inhomogeneous stability of bacteriorhodopsin in purple membrane are discussed on the basis of the results of the denaturation kinetics and the visible CD spectra.  相似文献   

11.
Summary. Circular dichroism (CD) spectroscopy was employed for native (wild type, WT) bacteriorhodopsin (bR) and several mutant derivatives: R134K, R134H, R82Q, S35C, L66C, and R134C/E194C. Comparative analysis of the CD spectra in visible range shows that only R134C/E194C exhibits biphasic CD, typical for native bR, the other mutants demonstrate CD spectra with significantly smaller or absent negative band. Since the biphasic CD is a feature of hexagonal lattice structure composed by bR trimers in the purple membrane, these mutants and WT were examined by cross-linking studies, which confirmed the same trend towards trimeric organization. Therefore, a single amino acid substitution may lead to drastically different CD spectra without disruption of bR trimeric organization. Thus, although disruption of bR trimeric crystalline lattice structure (e.g., solubilization with detergents) directly results in the disappearance of characteristic bilobe in visible CD, the lack of the bilobe in the CD alone does not predict the absence of trimers.  相似文献   

12.
Surface plasma oscillations in metallic particles as well as in thin metallic films have been studied extensively in the past decades. New features regarding surface plasma excitations are, however, constantly discovered, leading, for example, to surface-enhanced Raman scattering studies and enhanced optical transmission though metal films with nanohole arrays. In the present work, the role of a metallic substrate is examined in two cases, one involving an overcoat of dielectric nanoparticles and the other an overcoat of metallic nanoparticles. Theoretical results are obtained by modeling the nanoparticles as forming a two-dimensional, hexagonal lattice of spheres. The scattered electromagnetic field is then calculated using a variant of the Green function method. Comparison with experimental results is made for nanoparticles of tungsten oxide and tin oxide deposited on either gold or silver substrates, giving qualitative agreement on the extra absorption observed when the dielectric nanoparticles are added to the metallic surfaces. Such absorption would be attributed to the mirror image effects between the particles and the substrate. On the other hand, calculations of the optical properties of silver or gold nanoparticle arrays on a gold or a silver substrate demonstrate very interesting features in the spectral region from 400 to 1,000 nm. Interactions between the nanoparticle arrays surface plasmons and their images in the metallic substrate would be responsible for the red shift observed in the absorption resonance. Moreover, effects of particle size and ambient index of refraction are studied, showing a great potential for applications in biosensing with structures consisting of metallic nanoparticle arrays on metallic substrates.  相似文献   

13.
During vacuum condensation of metals on frozen proteins, nanoclusters are preferentially formed at specific surface sites (decoration). Understanding the nature of metal/protein interaction is of interest for structure analysis and is also important in the fields of biocompatibility and sensor development. Studies on the interaction between metal and distinct areas on the protein which enhance or impede the probability for cluster formation require information on the structural details of the protein's surface underlying the metal clusters. On three enzyme complexes, lumazine synthase from Bacillus subtilis, proteasome from Thermoplasma acidophilum and GTP cyclohydrolase I from Escherichia coli, the decoration sites as determined by electron microscopy (EM) were correlated with their atomic surface structures as obtained by X-ray crystallography. In all three cases, decoration of the same protein results in different cluster distributions for gold and silver. Gold decorates surface areas consisting of polar but uncharged residues and with rough relief whereas silver clusters are preferentially formed on top of protein pores outlined by charged and hydrophilic residues and filled with frozen buffer under the experimental conditions. A common quality of both metals is that they strictly avoid condensation on hydrophobic sites lacking polar and charged residues. The results open ways to analyse the binding mechanism of nanoclusters to small specific sites on the surface of hydrated biomacromolecules by non-microscopic, physical-chemical methods. Understanding the mechanism may lead to advanced decoration techniques resulting in fewer background clusters. This would improve the analysis of single molecules with regard to their symmetries and their orientation in the adsorbed state and in precrystalline assemblies as well as facilitate the detection of point defects in crystals caused by misorientation or by impurities.  相似文献   

14.
A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2:1 to 10:1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.  相似文献   

15.
The determination of the intermediate state structures of the bacteriorhodopsin photocycle has lead to an unprecedented level of understanding of the catalytic process exerted by a membrane protein. However, the crystallographic structures of the intermediate states are only relevant if the working cycle is not impaired by the crystal lattice. Therefore, we applied visible and Fourier transform infrared spectroscopy (FTIR) microspectroscopy with microsecond time resolution to compare the photoreaction of a single bacteriorhodopsin crystal to that of bacteriorhodopsin residing in the native purple membrane. The analysis of the FTIR difference spectra of the resolved intermediate states reveals great similarity in structural changes taking place in the crystal and in PM. However, the kinetics of the photocycle are significantly altered in the three-dimensional crystal as compared to PM. Strikingly, the L state decay is accelerated in the crystal, whereas the M decay is delayed. The physical origin of this deviation and the implications for trapping of intermediate states are discussed. As a methodological advance, time-resolved step-scan FTIR spectroscopy on a single protein crystal is demonstrated for the first time which may be used in the future to gauge the functionality of other crystallized proteins with the molecular resolution of vibrational spectroscopy.  相似文献   

16.
The purple membrane is a two-dimensional crystalline lattice formed by bacteriorhodopsin and lipid molecules in the cytoplasmic membrane of Halobacterium salinarum. High-resolution structural studies, in conjunction with detailed knowledge of the lipid composition, make the purple membrane one of the best models for elucidating the forces that are responsible for the assembly and stability of integral membrane protein complexes. In this review, recent mutational efforts to identify the structural features of bacteriorhodopsin that determine its assembly in the purple membrane are discussed in the context of structural, calorimetric and reconstitution studies. Quantitative evidence is presented that interactions between transmembrane helices of neighboring bacteriorhodopsin molecules contribute to purple membrane assembly. However, other specific interactions, particularly between bacteriorhodopsin and lipid molecules, may provide the major driving force for assembly. Elucidating the molecular basis of protein-protein and protein-lipid interactions in the purple membrane may provide insights into the formation of integral membrane protein complexes in other systems.  相似文献   

17.
The nature and extent of dehydration-induced molecular structural changes of the purple membrane of Halobacterium halobium have been studied by absorption and circular dichroism spectra in solution and in oriented membrane films. High glycerol concentrations, exhaustive dry nitrogen gas flushing, and exhaustive high-vacuum pumping were employed as dehydrants. The effect of these dehydrants on the spectra were reversible, similar, and additive. Analysis of the spectral changes observed at maximal dehydration revealed: (a) at least two additional optical states of the bacteriorhodopsin, one at higher energy and another at lower energy than the characteristic dark- and light-adapted states; (b) no change in the dichroic ratio at the visible absorption maximum within experimental error; (c) no change in the polarity of the visible monomeric retinylidene circular dichroic bands; (d) pronounced reduction in the characteristic excitonic interactions among the retinals in the hexagonal crystalline lattice of the membrane; (e) no changes in the native structural anisotropism of the membrane in respect to the orientation of the amino acid aromatic rings of the bacteriorhodopsin; (f) no changes in the secondary structure of the bacteriorhodopsin; and (g) a net tilting of ~20.5° per segment of the helical polypeptide segments of the bacteriorhodopsin away from the membrane normal. A molecular model of the structural changes of the membrane resulting from water removal consistent with these findings can be constructed. Dehydration results in only subtle localized tertiary structural changes of the protein which do not significantly alter its shape or size. However, there are pronounced global supramolecular structural changes of the membrane. Water removal, which is most likely to be from the lipid headgroups of the membrane, disrupts the interactions responsible for maintaining the native crystalline lattice of the membrane resulting in pronounced randomization of the positions of the proteins in the membrane.  相似文献   

18.
Purple membranes adsorbed to mica were imaged in buffer solution using the atomic force microscope. The hexagonal diffraction patterns of topographs from the cytoplasmic and the extracellular surface showed a resolution of 0.7 and 1.2 nm, respectively. On the cytoplasmic surface, individual bacteriorhodopsin molecules consistently exhibited a distinct substructure. Depending on the pH value of the buffer solution, the height of the purple membranes decreased from 5.6 nm (pH 10.5) to 5.1 nm (pH 4). The results are discussed with respect to the structure determined by cryo-electron microscopy.  相似文献   

19.
A new technique for the measurement of membrane surface potential is proposed and demonstrated. The method is based on the fact that a positively charged styryl dye molecule aggregates when present at high concentration in the Debye layer near a membrane bearing a negative surface potential. The dye in its aggregated form exhibits marked differences in its resonance Raman spectrum relative to the free dye molecules. This method was used to study the potential on the surfaces of the purple membrane that contains the pigment bacteriorhodopsin. A value of -29.5 mV was found for membranes with bacteriorhodopsin in its relaxed, light-adapted state, and the potential decreased to -34.5 mV when most of the bacteriorhodopsin was converted to the M412 intermediate. Because the dye probe does not diffuse through the lipid bilayer, it can be used to probe the potential on the external or internal surface of a vesicle. Thus, we found that the potential on the purple membrane was asymmetric and was localized mainly on the surface that faces the cytoplasm in the cell.  相似文献   

20.
The structural organization of cellular membranes has an essential influence on their functionality. The membrane surfaces currently are considered to consist of various distinct patches, which play an important role in many processes, however, not all parameters such as size and distribution are fully determined. In this study, purple membrane (PM) patches isolated from Halobacterium salinarum were investigated in a first step using TERS (tip‐enhanced Raman spectroscopy). The characteristic Raman modes of the resonantly enhanced component of the purple membrane lattice, the retinal moiety of bacteriorhodopsin, were found to be suitable as PM markers. In a subsequent experiment a single Halobacterium salinarum was investigated with TERS. By means of the PM marker bands it was feasible to identify and localize PM patches on the bacterial surface. The size of these areas was determined to be a few hundred nanometers. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号