首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To interpret or to predict the responses of biopolymer processes in vivo and in vitro to changes in solute concentration and to coupled changes in water activity (osmotic stress), a quantitative understanding of the thermodynamic consequences of interactions of solutes and water with biopolymer surfaces is required. To this end, we report isoosmolal preferential interaction coefficients (Gamma(mu1) determined by vapor pressure osmometry (VPO) over a wide range of concentrations for interactions between native bovine serum albumin (BSA) and six small solutes. These include Escherichia coli cytoplasmic osmolytes [potassium glutamate (K(+)Glu(-)), trehalose], E. coli osmoprotectants (proline, glycine betaine), and also glycerol and trimethylamine N-oxide (TMAO). For all six solutes, Gamma(mu1) and the corresponding dialysis preferential interaction coefficient Gamma(mu1),(mu3) (both calculated from the VPO data) are negative; Gamma(mu1), (mu3) is proportional to bulk solute molality (m(bulk)3) at least up to 1 m (molal). Negative values of Gamma(mu1),(mu3) indicate preferential exclusion of these solutes from a BSA solution at dialysis equilibrium and correspond to local concentrations of these solutes in the vicinity of BSA which are lower than their bulk concentrations. Of the solutes investigated, betaine is the most excluded (Gamma(mu1),(mu3)/m(bulk)3 = -49 +/- 1 m(-1)); glycerol is the least excluded (Gamma(mu1),(mu3)/m(bulk)3 = -10 +/- 1 m(-1)). Between these extremes, the magnitude of Gamma(mu1),(mu3)/m(bulk)3 decreases in the order glycine betaine > proline >TMAO > trehalose approximately K(+)Glu(-) > glycerol. The order of exclusion of E. coli osmolytes from BSA surface correlates with their effectiveness as osmoprotectants, which increase the growth rate of E. coli at high external osmolality. For the most excluded solute (betaine), Gamma(mu1),(mu3) provides a minimum estimate of the hydration of native BSA of approximately 2.8 x 10(3) H(2)O/BSA, which corresponds to slightly less than a monolayer (estimated to be approximately 3.2 x 10(3) H(2)O). Consequently, of the solutes investigated here, only betaine might be suitable for use in osmotic stress experiments in vitro as a direct probe to quantify changes in hydration of protein surface in biopolymer processes. More generally, however, our results and analysis lead to the proposal that any of these solutes can be used to quantify changes in water-accessible surface area (ASA) in biopolymer processes once preferential interactions of the solute with biopolymer surface are properly taken into account.  相似文献   

3.
Dexfenfluramine (dF) and dexnorfenfluramine (dNF), its metabolite, are anorectic agents that release serotonin (5-HT) and may have a direct postsynaptic action. The effects on the anorectic effects of dF and dNF of either acute (p-chlorophenylalanine, PCPA) or chronic (5,7-dihydroxytryptamine, 5,7-DHT) brain 5-HT depletions were studied in rats and compared with the actions of a 5-HT uptake inhibitor (fluoxetine) and 5-HT(1B/2C) receptor agonists [1-(3-trifluoromethyl-phenyl)-piperazine and 1-(3-chlorophenyl) piperazine]. The anorexia caused by these agonists was enhanced in rats with 5,7-DHT lesions, possibly a result of receptor supersensitivity. In contrast, fluoxetine anorexia was somewhat reduced in one study and was unchanged in a second. Both dF and dNF anorexias were enhanced in rats with 5,7-DHT lesions. In contrast, the anorectic effects of either dF or dNF were unchanged in PCPA-treated rats relative to controls. Compared with controls, 5, 7-DHT-lesion rats showed greatly increased dF- and dNF-induced Fos-like immunoreactivity (ir) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei, and in the median preoptic area (MnPO), but were similar to controls in most other areas. PCPA pretreatment increased dF- and dNF-induced Fos-ir in the PVN, SON, and MnPO. In controls, equianorectic doses of dF and dNF induced Fos-ir in similar brain regions, but dNF produced relatively larger effects than dF in SON, PVN, and MnPO. The data are discussed in terms of multiple pathways in the anorectic actions of dF and dNF.  相似文献   

4.
Gries DA  Condouris GA  Shey Z  Houpt M 《Life sciences》2005,76(15):1667-1674
Few animal studies have explored the interaction of nitrous oxide (N2O) with a benzodiazepine (BNZ) administered by the oral route, as used in clinical procedures involving "conscious sedation". The purpose of this study was to evaluate the relative "anxiolytic-like" and sedative effectiveness of N2O, oral triazolam (TRIAZ; Halcion) or oral diazepam (DIAZ; Valium), either alone or in various combinations of drugs and doses. One hundred and twelve Swiss Webster male mice, 35-45 days old, were assigned to 28 groups, each of which contained four mice. The mouse staircase test was used for the assessment of anxiety (number of rearings) and sedation (number of steps ascended). Three doses of oral TRIAZ (0.1, 0.3, 1.0 mg/kg) or DIAZ (2.0, 3.5, 5.0 mg/kg) were given in combination with room air, or N2O/O2 at a N2O concentration of 25, 50 or 75%. Each mouse was tested once. N2O alone did not reduce NR in any concentration, but caused a significant increase in locomotion. DIAZ without N2O reduced NR only with the middle and high doses, but the addition of N2O significantly enhanced the anxiolytic-like effect of all DIAZ doses. TRIAZ, alone, reduced NR only in the highest dose, but added N2O resulted in anxiolytic-like behavior with all three TRIAZ doses. The sedative effects of the BNZs were extremely variable. Only the middle dose of DIAZ plus 25% N2O unequivocally reduced the number of steps ascended, i.e., caused sedation. TRIAZ lacked the inverted U-shaped dose-response relationship with NR usually seen with DIAZ. TRIAZ, therefore, provides better dose control. This behavioral animal model indicates that the optimal combinations for reduction of anxiety-like behavior with minimal effects on sedation are 0.1 mg/kg oral TRIAZ with 25% N2O or 2.0 mg/kg oral DIAZ with 25% N2O.  相似文献   

5.
M A Gillman 《Life sciences》1986,39(14):1209-1221
The concept that anesthesia and analgesia are distinct states and therefore are possibly mediated by different mechanisms is stressed. Analgesic nitrous oxide is shown to act at specific rather than non specific central nervous system sites, as well as having a large number of actions similar to morphine the classical opioid. This includes the fact that specific opioid antagonists attenuate the effects of both morphine and analgesic nitrous oxide. Evidence is also provided showing that nitrous oxide may be a partial agonist and that it may interact with the endogenous opioid system by the release of endogenous opioids, and/or by direct action at the mu, delta, sigma and kappa receptors.  相似文献   

6.
Chloroquine increases the inhibition of cultured lymphocytes by high concentrations of phytohemagglutinin (PHA) or concanavalin A (Con A). The inhibition is also increased by complement. Thus chloroquine and complement have similar effects. Time-course studies show that chloroquine increases the rate of onset of the complement-dependent inhibition. In serum preheated to inactivate complement, chloroquine can partially simulate the effect of complement. It is suggested that at certain stages in malaria or autoimmune disease the rate of clearance of parasitized erythrocytes or autoreactive lymphocytes is limited by the concentration of complement. Under these conditions a drug such as chloroquine, which could enhance or simulate the action of complement, might be of therapeutic value.  相似文献   

7.
The localization of dioxygen sites in oxygen-binding proteins is a nontrivial experimental task and is often suggested through indirect methods such as using xenon or halide anions as oxygen probes. In this study, a straightforward method based on x-ray crystallography under high pressure of pure oxygen has been developed. An application is given on urate oxidase (UOX), a cofactorless enzyme that catalyzes the oxidation of uric acid to 5-hydroxyisourate in the presence of dioxygen. UOX crystals in complex with a competitive inhibitor of its natural substrate are submitted to an increasing pressure of 1.0, 2.5, or 4.0 MPa of gaseous oxygen. The results clearly show that dioxygen binds within the active site at a location where a water molecule is usually observed but does not bind in the already characterized specific hydrophobic pocket of xenon. Moreover, crystallizing UOX in the presence of a large excess of chloride (NaCl) shows that one chloride ion goes at the same location as the oxygen. The dioxygen hydrophilic environment (an asparagine, a histidine, and a threonine residues), its absence within the xenon binding site, and its location identical to a water molecule or a chloride ion suggest that the dioxygen site is mainly polar. The implication of the dioxygen location on the mechanism is discussed with respect to the experimentally suggested transient intermediates during the reaction cascade.  相似文献   

8.
M P Ready  Y Kim  J D Robertus 《Proteins》1991,10(3):270-278
Ricin A-chain is an N-glycosidase that attacks ribosomal RNA at a highly conserved adenine residue. The enzyme is representative of a large family of medically significant proteins used in the design of anticancer agents and in the treatment of HIV infection. The x-ray structure has been used as a guide to create several active site mutations by directed mutagenesis of the cloned gene. Glu177 is a key catalytic residue, and conversion to Gln reduces activity 180-fold. Asn209 is shown to participate in substrate binding by kinetic analysis. Conversion to Ser increases Km sixfold but has no effect on kcat. Conversion of Tyr80 and Tyr123 to Phe decreases activity by 15- and 7-fold respectively. A mechanism of action is proposed that involves binding of the substrate adenine in a syn configuration that resembles the transition state; the putative oxycarbonium ion is probably stabilized by interaction with Glu177.  相似文献   

9.
10.
A new class of ribozymes produce 2',3'-cyclic phosphate upon self-catalyzed cleavage of RNA molecules, similar to those observed during enzymatic (RNase-catalyzed) as well as non-enzymatic hydrolyses of RNAs. This product suggests that the reaction intermediate/transition state is a pentacoordinated oxyphosphorane. In order to elucidate the energetics of these RNA cleaving reactions, the reaction coordinate has been simulated and a pentacoordinated intermediate has been characterized via ab initio molecular orbital calculations utilizing the dianionic hydrolysis-intermediate of methyl ethylene phosphate as a model compound. The calculated reaction coordinate indicates that the transition state for the P-O(2') bond cleavage is lower in energy than that for the P-O(5') bond cleavage under uncatalyzed conditions. Thus, the dianionic pentacoordinated phosphorus intermediate tends to revert back to the starting RNA by cleaving the P-O(2') bond rather than productively cleaving the P-O(5') bond. In order for ribozymes to effectively cleave RNA molecules, it is therefore mandatory to stabilize the leaving 5'-oxygen, e.g. by means of a divalent magnesium ion.  相似文献   

11.
12.
13.
Reduction of NO and NO2-by whole cells of eight strains of denitrifying bacteria known to contain either heme cd1 or copper-containing nitrite reductases (NiRs) has been examined in the presence of H218O. All organisms containing heme cd1 NiRs exhibited relatively large extents of exchange between NO2- and H218O (39-100%), as monitored by the 18O content of product N2O. Organisms containing copper NiRs gave highly variable results, with Achromobacter cycloclastes and Pseudomonas aureofaciens exhibiting no 18O incorporation and Rhodopseudomonas sphaeroides and Alcaligenes entrophus exhibiting complete exchange between NO2- and H218O. Organisms containing heme cd1 NiRs exhibited significant but lower levels of exchange between NO and H218O than between NO2- and H218O, while organisms containing copper NiRs gave significantly higher amounts of 18O incorporation than observed for the heme cd1 organisms. These results demonstrate the existence of an NO-derived species capable of undergoing O-atom exchange with H218O during the reduction of NO. Trapping experiments with 15NO, 14N3-, and crude extracts of R. sphaeroides support the electrophilic nature of this intermediate and suggest its formulation as an enzyme nitrosyl, E-NO+, analogous to that observed during reduction of NO2-. The observation of lower levels of 18O incorporation with NO2- than with NO as substrate for A. cycloclastes and P. aureofaciens indicates that, for these organisms at least, a sequential pathway involving free NO as an intermediate is significantly less important than a direct pathway in which N2O is formed via reaction of two NO2- ions on a single enzyme.  相似文献   

14.
Incubations of allene oxide synthases of flax or maize with the E,E-isomers of the 13- and 9-hydroperoxides of linoleic acid (E,E-13- and E,E-9-HPOD, respectively) at pH 7.5 afforded substantial yields of trans-disubstituted cyclopentenones. Under the conditions used, (Z,E)-HPODs were converted mainly into -ketols and afforded only trace amount of cyclopentenones. These findings indicated that changing the double bond geometry from Z to E dramatically increased the rate of formation of the pericyclic pentadienyl cation intermediate necessary for electrocyclization of 18:2-allene oxides and thus the yield of cyclopentenones. The well-known cyclization of the homoallylic allene oxide (12,13-EOT) derived from -linolenic acid 13-hydroperoxide (E,Z-13-HPOT) into cis-12-oxo-10,15-phytodienoic acid was suppressed at pH below neutral and was not observable at pH 4.5. In contrast, cyclization of the allene oxide ((9E)-12,13-EOD) derived from (E,E)-13-HPOD was slightly favoured at low pH. The finding that the cyclizations of 12,13-EOT and (9E)-12,13-EOD were differently affected by changes in pH suggested that the mechanisms of cyclization of these allene oxides are distinct.  相似文献   

15.
Altered prolyl oligopeptidase (PREP) activity is found in many common neurological and other genetic disorders, and in some cases PREP inhibition may be a promising treatment. The active site of PREP resides in an internal cavity; in addition to the direct interaction between active site and substrate or inhibitor, the pathway to reach the active site (the gating mechanism) must be understood for more rational inhibitor design and understanding PREP function. The gating mechanism of PREP has been investigated through molecular dynamics (MD) simulation combined with crystallographic and mutagenesis studies. The MD results indicate the inter-domain loop structure, comprised of 3 loops at residues, 189-209 (loop A), 577-608 (loop B), and 636-646 (loop C) (porcine PREP numbering), are important components of the gating mechanism. The results from enzyme kinetics of PREP variants also support this hypothesis: When loop A is (1) locked to loop B through a disulphide bridge, all enzyme activity is halted, (2) nicked, enzyme activity is increased, and (3) removed, enzyme activity is only reduced. Limited proteolysis study also supports the hypothesis of a loop A driven gating mechanism. The MD results show a stable network of H-bonds that hold the two protein domains together. Crystallographic study indicates that a set of known PREP inhibitors inhabit a common binding conformation, and this H-bond network is not significantly altered. Thus the domain separation, seen to occur in lower taxa, is not involved in the gating mechanism for mammalian PREP. In two of the MD simulations we observed a conformational change that involved the breaking of the H-bond network holding loops A and B together. We also found that this network was more stable when the active site was occupied, thus decreasing the likelihood of this transition.  相似文献   

16.
Atrazine, a chlorotriazine herbicide, is used to control annual grasses and broadleaf weeds. In this review, we summarize our laboratory's work evaluating the neuroendocrine toxicity of atrazine (and related chlorotriazines) from an historic perspective. We provide the rationale for our work as we have endeavored to determine: 1) the underlying reproductive changes leading to the development of mammary gland tumors in the atrazine-exposed female rat; 2) the cascade of physiological events that are responsible for these changes (i.e., the mode of action for mammary tumors); 3) the potential cellular mechanisms involving adverse effects of atrazine; and 4) the range of reproductive alterations associated with this pesticide.  相似文献   

17.
18.
BACKGROUND: The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW: The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.  相似文献   

19.
20.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号