首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

2.
Chu CH  Lai YJ  Huang H  Sun YJ 《Proteins》2008,71(1):396-406
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM.  相似文献   

3.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

4.
Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating.  相似文献   

5.
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments.  相似文献   

6.
7.
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains.  相似文献   

8.
Triosephosphate isomerase (TIM), whose structure is archetypal of dimeric (beta/alpha)(8) barrels, has a conserved salt bridge (Arg189-Asp225 in yeast TIM) that connects the two C-terminal beta/alpha segments to rest of the monomer. We constructed the mutant D225Q, and studied its catalysis and stability in comparison with those of the wild-type enzyme. Replacement of Asp225 by Gln caused minor drops in k(cat) and K(M), but the catalytic efficiency (k(cat)/K(M)) was practically unaffected. Temperature-induced unfolding-refolding of both TIM samples displayed hysteresis cycles, indicative of processes far from equilibrium. Kinetic studies showed that the rate constant for unfolding was about three-fold larger in the mutant than in wild-type TIM. However, more drastic changes were found in the kinetics of refolding: upon mutation, the rate-limiting step changed from a second-order (at submicromolar concentrations) to a first-order reaction. These results thus indicate that renaturation of yTIM occurs through a uni-bimolecular mechanism in which refolding of the monomer most likely begins at the C-terminal half of its polypeptide chain. From the temperature dependence of the refolding rate, we determined the change in heat capacity for the formation of the transition state from unfolded monomers. The value for the D225Q mutant, which is about 40% of the corresponding value for yTIM, would implicate the folding of only three quarters of a monomer chain in the transition state.  相似文献   

9.
Amide hydrogen exchange and mass spectrometry have been used to study the pH-induced structural changes in the capsid of brome mosaic virus (BMV). Capsid protein was labeled in a structurally sensitive way by incubating intact viral particles in D(2)O at pH 5.4 and 7.3. Deuterium levels in the intact coat protein and its proteolytic fragments were determined by mass spectrometry. The largest deuterium increases induced by structural alteration occurred in the regions around the quasi-threefold axes, which are located at the center of the asymmetric unit. The increased levels of deuterium indicate loosening of structure in these regions. This observation confirms the previously proposed swelling model for BMV and cowpea chlorotic mottle virus (CCMV) and is consistent with the structure of swollen CCMV recently determined by cryo-electron microscopy and image reconstruction. Structural changes in the extended N- and C-terminal arms were also detected and compared with the results obtained with other swollen plant viruses. This study demonstrates that protein fragmentation/amide hydrogen exchange is a useful tool for probing structural changes in viral capsids.  相似文献   

10.
The process of thermal inactivation of triosephosphate isomerase covalently attached to a silica-based support activated with p-benzoquinone was found to be a complex one. At 50 degrees C, a characteristic activation preceding the thermal inactivation was observed. Following the intramolecular changes caused by heat, the values of K(M) and V(max) were determined during the activation. It was presumed that the complex thermal inactivation kinetics reflects the microheterogeneity of the immobilized enzyme molecules. The phosphate ion proved to be a better stabilizer than the substrate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
We study the structural fluctuations of triosephosphate isomerase (TIM) by an elastic model, namely, the Gaussian network model (GNM), to identify a network of coupled motions in the allosteric communication between its deamidation and catalytic sites, and the promoting motions for the deamidation activity. For this, three TIM structures have been studied: one crystal structure and two model structures designed to describe different putative models for the deamidation reaction taking place at the subunit interface. The structural fluctuations have been mapped on the functional properties; then the differences in the fluctuations between the two models in relation to the deamidation reaction have been considered. The results demonstrate that the qualitative picture of the mean-square fluctuations and the correlations between the fluctuations are similar in both, but the differences may affect the observed barrier height of the deamidation reaction. The higher packing density at regions close to deamidation sites, reflected by the high-frequency fluctuating residues in the respective regions, the stronger positive correlation between the fluctuations of the deamidation sites, and enhanced positive correlation of the primary deamidation site with the extended vicinity of the catalytic region on the juxtaposed unit promote the probability of the deamidation reaction. The results in general emphasize the importance of structural fluctuations in enzyme reactions, as well as proposing the present methodology as a plausible approach for studies on the network of coupled promoting motions in protein functions.  相似文献   

12.
A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.  相似文献   

13.
We present a comprehensive analysis of the catalytic cycle of the enzyme triosephosphate isomerase (TIM), including both the reactive chemistry and the catalytic loop and side-chain motions. Combining accurate mixed quantum mechanics/molecular mechanics (QM/MM) and protein structure prediction methods, we have modeled both the structural and chemical aspects of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a wealth of experimental data. The conjunction of this novel computational approach with the use of the recent near-atomic resolution TIM-DHAP Michaelis complex PDB structure, 1NEY.pdb, has enabled us to obtain robust qualitative and, where available, quantitative agreement with a wide range of experimental data. Among the principal conclusions that we are able to draw are the importance of the monoanionic (as opposed to dianioic) form of the substrate phosphate group in the catalytic cycle, detailed positioning and energetics of the key catalytic residues in the active-site, the flexible nature of Glu165, which favors its direct involvement in the formation of the enediol intermediate, energetics of the open and closed form of the catalytic loop region in the presence and absence of substrate, and quantitative reproduction of various experimentally measured reaction rates, typically to within approximately 1 kcal/mol. Our results are consistent with the available experimental data, and provide an initial picture as to why loop opening when GAP is the product has a higher barrier than when DHAP is the product.  相似文献   

14.
The extent of deuterium labeling of hen lysozyme, its three-disulfide derivative, and the homologous alpha-lactalbumins, has been measured by both mass spectrometry and NMR. Different conformational states of the proteins were produced by varying the solution conditions. Alternate protein conformers were found to contain different numbers of 2H atoms. Furthermore, measurement in the gas phase of the mass spectrometer or directly in solution by NMR gave consistent results. The unique ability of mass spectrometry to distinguish distributions of 2H atoms in protein molecules is exemplified using samples prepared to contain different populations of 2H-labeled protein. A comparison of the peak widths of bovine alpha-lactalbumin in alternate solution conformations but containing the same average number of 2H atoms showed dramatic differences due to different 2H distributions in the two protein conformers. Measurement of 2H distributions by ESI-MS enabled characterization of conformational averaging and structural heterogeneity. In addition, a time course for hydrogen exchange was examined and the variation in distributions of 2H atom compared with simulations for different hydrogen exchange models. The results clearly show that exchange from the native state of bovine alpha-lactalbumin at 15 degrees C is dominated by local unfolding events.  相似文献   

15.
Two new electrophoretic variants of human triosephosphate isomerase (TPI) have been partially purified and characterized. The TPI Manchester variant, a cathodally migrating electrophoretic allozyme identified in an individual with the phenotype TPI 1-Manchester, is associated with a normal level of enzyme activity in erythrocytes and normal kinetic properties. It is very thermolabile at 55 and 57° C, although it is not uniquely sensitive to either guanidine-HCl or urea denaturation. The TPI Hiroshima-2 variant is an anodally migrating allozyme (the phenotype of proband is TPI 1-Hiroshima-2) with normal activity and kinetic properties and also normal stability characteristics. It is inactivated less by antisera raised against normal human TPI than either the normal or the Manchester allozyme. Dissociation-reassociation experiments utilizing these allozymes have confirmed that normal human red blood cell TPI isozymes are produced by a sequence of reactions (presumably deamidations) involving alternating subunits.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy.  相似文献   

16.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

17.
徐剑  周君  刘晓红  陆小平 《昆虫知识》2009,46(5):703-709
从意大利蜜蜂Apis mellifera ligustica的肌肉组织中提取总RNA,采用RT-PCR的方法克隆蜜蜂第16号染色体上的丙糖磷酸异构酶基因的cDNA序列,将测序结果(GenBank登录号EU76098)与推导的氨基酸序列分别与GenBank中的其他物种进行同源比对分析。结果表明,该基因全长744bp,为完整的阅读框,编码247个氨基酸,成熟蛋白的理论分子量为26.89kD。比对结果显示AmTPI与家蚕、德国小镰、黄粉虫、丽蝇蛹集金小蜂、水稻等物种的基因相似性达69%以上,蛋白相似性达59%以上。将目的基因克隆到pGEX-4T-2融合表达载体上,并在大肠杆菌中得到成功表达,4h的表达量为总蛋白的42.1%。为了进一步探讨产物的酶学特性,实验还对表达产物进行纯化与浓缩。实验还构建增强型荧光真核表达质粒,为进一步研究AmTPI在真核细胞中的表达情况奠定基础。  相似文献   

18.
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution‐phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT‐KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild‐type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.  相似文献   

19.
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK–TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.  相似文献   

20.
Protein amide hydrogen exchange (HDX) is a convoluted process, whose kinetics is determined by both dynamics of the protein and the intrinsic exchange rate of labile hydrogen atoms fully exposed to solvent. Both processes are influenced by a variety of intrinsic and extrinsic factors. A mathematical formalism initially developed to rationalize exchange kinetics of individual amide hydrogen atoms is now often used to interpret global exchange kinetics (e.g., as measured in HDX MS experiments). One particularly important advantage of HDX MS is direct visualization of various protein states by observing distinct protein ion populations with different levels of isotope labeling under conditions favoring correlated exchange (the so-called EX1 exchange mechanism). However, mildly denaturing conditions often lead to a situation where the overall HDX kinetics cannot be clearly classified as either EX1 or EX2. The goal of this work is to develop a framework for a generalized exchange model that takes into account multiple processes leading to amide hydrogen exchange, and does not require that the exchange proceed strictly via EX1 or EX2 kinetics. To achieve this goal, we use a probabilistic approach that assigns a transition probability and a residual protection to each equilibrium state of the protein. When applied to a small protein chymotrypsin inhibitor 2, the algorithm allows complex HDX patterns observed experimentally to be modeled with remarkably good fidelity. On the basis of the model we are now in a position to begin to extract quantitative dynamic information from convoluted exchange kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号