首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

2.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

3.
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments.  相似文献   

4.
The process of thermal inactivation of triosephosphate isomerase covalently attached to a silica-based support activated with p-benzoquinone was found to be a complex one. At 50 degrees C, a characteristic activation preceding the thermal inactivation was observed. Following the intramolecular changes caused by heat, the values of K(M) and V(max) were determined during the activation. It was presumed that the complex thermal inactivation kinetics reflects the microheterogeneity of the immobilized enzyme molecules. The phosphate ion proved to be a better stabilizer than the substrate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
We present a comprehensive analysis of the catalytic cycle of the enzyme triosephosphate isomerase (TIM), including both the reactive chemistry and the catalytic loop and side-chain motions. Combining accurate mixed quantum mechanics/molecular mechanics (QM/MM) and protein structure prediction methods, we have modeled both the structural and chemical aspects of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde 3-phosphate (GAP), for which there is a wealth of experimental data. The conjunction of this novel computational approach with the use of the recent near-atomic resolution TIM-DHAP Michaelis complex PDB structure, 1NEY.pdb, has enabled us to obtain robust qualitative and, where available, quantitative agreement with a wide range of experimental data. Among the principal conclusions that we are able to draw are the importance of the monoanionic (as opposed to dianioic) form of the substrate phosphate group in the catalytic cycle, detailed positioning and energetics of the key catalytic residues in the active-site, the flexible nature of Glu165, which favors its direct involvement in the formation of the enediol intermediate, energetics of the open and closed form of the catalytic loop region in the presence and absence of substrate, and quantitative reproduction of various experimentally measured reaction rates, typically to within approximately 1 kcal/mol. Our results are consistent with the available experimental data, and provide an initial picture as to why loop opening when GAP is the product has a higher barrier than when DHAP is the product.  相似文献   

6.
Two new electrophoretic variants of human triosephosphate isomerase (TPI) have been partially purified and characterized. The TPI Manchester variant, a cathodally migrating electrophoretic allozyme identified in an individual with the phenotype TPI 1-Manchester, is associated with a normal level of enzyme activity in erythrocytes and normal kinetic properties. It is very thermolabile at 55 and 57° C, although it is not uniquely sensitive to either guanidine-HCl or urea denaturation. The TPI Hiroshima-2 variant is an anodally migrating allozyme (the phenotype of proband is TPI 1-Hiroshima-2) with normal activity and kinetic properties and also normal stability characteristics. It is inactivated less by antisera raised against normal human TPI than either the normal or the Manchester allozyme. Dissociation-reassociation experiments utilizing these allozymes have confirmed that normal human red blood cell TPI isozymes are produced by a sequence of reactions (presumably deamidations) involving alternating subunits.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy.  相似文献   

7.
徐剑  周君  刘晓红  陆小平 《昆虫知识》2009,46(5):703-709
从意大利蜜蜂Apis mellifera ligustica的肌肉组织中提取总RNA,采用RT-PCR的方法克隆蜜蜂第16号染色体上的丙糖磷酸异构酶基因的cDNA序列,将测序结果(GenBank登录号EU76098)与推导的氨基酸序列分别与GenBank中的其他物种进行同源比对分析。结果表明,该基因全长744bp,为完整的阅读框,编码247个氨基酸,成熟蛋白的理论分子量为26.89kD。比对结果显示AmTPI与家蚕、德国小镰、黄粉虫、丽蝇蛹集金小蜂、水稻等物种的基因相似性达69%以上,蛋白相似性达59%以上。将目的基因克隆到pGEX-4T-2融合表达载体上,并在大肠杆菌中得到成功表达,4h的表达量为总蛋白的42.1%。为了进一步探讨产物的酶学特性,实验还对表达产物进行纯化与浓缩。实验还构建增强型荧光真核表达质粒,为进一步研究AmTPI在真核细胞中的表达情况奠定基础。  相似文献   

8.
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK–TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.  相似文献   

9.
The proposed kinetic folding mechanism of the alpha-subunit of tryptophan synthase (alphaTS), a TIM barrel protein, displays multiple unfolded and intermediate forms which fold through four parallel pathways to reach the native state. To obtain insight into the secondary structure that stabilizes a set of late, highly populated kinetic intermediates, the refolding of urea-denatured alphaTS from Escherichia coli was monitored by pulse-quench hydrogen exchange mass spectrometry. Following dilution from 8 M urea, the protein was pulse-labeled with deuterium, quenched with acid and mass analyzed by electrospray ionization mass spectrometry (ESI-MS). Hydrogen bonds that form prior to the pulse of deuterium offer protection against exchange and, therefore, retain protons at the relevant amide bonds. Consistent with the proposed refolding model, an intermediate builds up rapidly and decays slowly over the first 100 seconds of folding. ESI-MS analysis of the peptic fragments derived from alphaTS mass-labeled and quenched after two seconds of refolding indicates that the pattern of protection of the backbone amide hydrogens in this transient intermediate is very similar to that observed previously for the equilibrium intermediate of alphaTS highly populated at 3 M urea. The protection observed in a contiguous set of beta-strands and alpha-helices in the N terminus implies a significant role for this sub-domain in directing the folding of this TIM barrel protein.  相似文献   

10.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

11.
Hydrogen/deuterium exchange mass spectrometry (H/D MS) of monomeric actin (G-actin), polymeric actin (F-actin), phalloidin-bound F-actin and G-actin complexed with DNase I provides new insights into the architecture of F-actin and the effects of phalloidin and DNase I binding. Although the overall pattern of deuteration change supports the gross features of the Holmes F-actin model, two important differences were observed. Most significantly, no change in deuteration was observed in the critical "hydrophobic plug" region, suggesting this feature may not be present. Polymerization also produced deuteration increases for peptide fragments containing the ATP phosphate-binding loops, suggesting G-actin transitions to a more "open" conformation upon polymerization. However, polymerization produced decreases in deuteration mainly localized to the "inner", filament-axis side as predicted by the Holmes model. Mapping the phalloidin-induced decreases in F-actin deuteration onto the Lorenz binding site produced a single common patch straddling two monomers across the 1-start helix contact, again consistent with the Holmes architecture. Finally, both DNase I and phalloidin were able to alter the deuteration of regions distal to their respective binding sites. These results highlight the great opportunities for H/D MS to exploit high-resolution structures for detailed studies of the organization and dynamics of complex molecular assemblies.  相似文献   

12.
MAb1, a human IgG1 monoclonal antibody produced in a NS0 cell line, exhibits charge heterogeneity because of the presence of variants formed by processes such as N-terminal glutamate cyclization, C-terminal lysine truncation, deamidation, aspartate isomerization and sialylation in the carbohydrate moiety. Four major charge variants of MAb1 were isolated and the conformations of these charge variants were studied using hydrogen/deuterium exchange mass spectrometry, including the H/D exchange time course (HX-MS) and the stability of unpurified proteins from rates of H/D exchange (SUPREX) techniques. HX-MS was used to evaluate the conformation and solution dynamics of MAb1 charge variants by measuring their deuterium buildup over time at the peptide level. The SUPREX technique evaluated the unfolding profile and relative stability of the charge variants by measuring the exchange properties of globally protected amide protons in the presence of a chemical denaturant. The H/D exchange profiles from both techniques were compared among the four charge variants of MAb1. The two techniques together offered extensive understanding about the local and subglobal/global unfolding of the charge variants of MAb1. Our results demonstrated that all four charge variants of MAb1 were not significantly different in conformation, solution dynamics and chemical denaturant-induced unfolding profile and stability, which aids in understanding the biofunctions of the molecules. The analytical strategy used for conformational characterization may also be applicable to comparability studies done for antibody therapeutics.  相似文献   

13.
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.  相似文献   

14.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

15.
IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.  相似文献   

16.
    
Recently, we presented a convenient method combining a deuterium‐hydrogen exchange and electrospray mass spectrometry for studying high‐pressure denaturation of proteins (Stefanowicz et al., Biosci Rep 2009; 30:91–99). Here, we present results of pressure‐induced denaturation studies of an amyloidogenic protein—the wild‐type human cystatin C (hCC) and its single‐point mutants, in which Val57 residue from the hinge region was substituted by Asn, Asp or Pro, respectively. The place of mutation and the substituting residues were chosen mainly on a basis of theoretical calculations. Observation of H/D isotopic exchange proceeding during pressure induced unfolding and subsequent refolding allowed us to detect differences in the proteins stability and folding dynamics. On the basis of the obtained results we can conclude that proline residue at the hinge region makes cystatin C structure more flexible and dynamic, what probably facilitates the dimerization process of this hCC variant. Polar asparagine does not influence stability of hCC conformation significantly, whereas charged aspartic acid in 57 position makes the protein structure slightly more prone to unfolding. Our experiments also point out pressure denaturation as a valuable supplementary method in denaturation studies of mutated proteins. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.  相似文献   

18.
Electrospray ionization mass spectrometry (ESI MS) under nanospray conditions has been used to examine the effects of mutation at two key dimer interface residues, Gln (Q) 64 and Thr (T) 75, in Plasmodium falciparum triosephosphate isomerase. Both residues participate in an intricate network of intra- and intersubunit hydrogen bonds. The gas phase distributions of dimeric and monomeric protein species have been examined for the wild type enzyme (TWT) and three mutants, Q64N, Q64E, and T75S, under a wide range of collision energies (40–160 eV). The results established the order of dimer stability as TWT > T75S > Q64E ∼ Q64N. The mutational effects on dimer stability are in good agreement with the previously reported estimates, based on the concentration dependence of enzyme activity. Additional experiments in solution, using inhibition of activity by a synthetic dimer interface peptide, further support the broad agreement between gas phase and solution studies.  相似文献   

19.
cAMP-dependent protein kinase (cAPK) is a key component in numerous cell signaling pathways. The cAPK regulatory (R) subunit maintains the kinase in an inactive state until cAMP saturation of the R-subunit leads to activation of the enzyme. To delineate the conformational changes associated with cAPK activation, the amide hydrogen/deuterium exchange in the cAPK type IIbeta R-subunit was probed by electrospray mass spectrometry. Three states of the R-subunit, cAMP-bound, catalytic (C)-subunit bound, and apo, were incubated in deuterated water for various lengths of time and then, prior to mass spectrometry analysis, subjected to digestion by pepsin to localize the deuterium incorporation. High sequence coverage (>99%) by the pepsin-digested fragments enables us to monitor the dynamics of the whole protein. The effects of cAMP binding on RIIbeta amide hydrogen exchange are restricted to the cAMP-binding pockets, while the effects of C-subunit binding are evident across both cAMP-binding domains and the linker region. The decreased amide hydrogen exchange for residues 253-268 within cAMP binding domain A and for residues 102-115, which include the pseudosubstrate inhibitory site, support the prediction that these two regions represent the conserved primary and peripheral C-subunit binding sites. An increase in amide hydrogen exchange for a broad area within cAMP-binding domain B and a narrow area within cAMP-binding domain A (residues 222-232) suggest that C-subunit binding transmits long-distance conformational changes throughout the protein.  相似文献   

20.
Human insulin and insulin lispro (lispro), a rapid-acting insulin analog, have identical primary structures, except for the transposition of a pair of amino acids. This mutation results in alterations in their higher order structures, with lispro dissociating more easily than human insulin. In our previous study performed using hydrogen/deuterium exchange mass spectrometry (HDX/MS), differences were observed in the rates and levels of deuteration among insulin analog products, which were found to be related to their self-association stability. In this study, we carried out peptide mapping of deuterated human insulin and lispro to determine the regions responsible for these deuteration differences and to elucidate the type of structural changes that affect their HDX reactivity. We identified A3–6 and B22–24 as the 2 regions that showed distinct differences in the number of deuterium atoms incorporated between human insulin and lispro. These regions contain residues that are thought to participate in hexamerization and dimerization, respectively. We also determined that over time, the differences in deuteration levels decreased in A3–6, whereas they increased in B22–24, suggesting a difference in the dynamics between these 2 regions. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号