首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
Larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), are frequently exposed to dehydrating conditions on the Antarctic Peninsula. In this study, we examined how rates and levels of dehydration alter heat and cold tolerance and how these relate to levels of trehalose within the insect. When dehydrated, larvae tolerated cold and heat stress more effectively, although resistance to cold was more pronounced than heat resistance. Slow dehydration was more effective than rapid dehydration in increasing temperature tolerance. Severe dehydration (50% reduction in water content) caused a much greater increase in temperature tolerance than did mild dehydration (e.g. 10% water loss). Larvae severely dehydrated at a slow rate (98% RH) were more temperature tolerant than those dehydrated quickly (0 or 75% RH). These results indicate that the slower dehydration rate allows the larvae to more effectively respond to reduced water levels and that physiological adjustments to desiccation provide cross tolerance to cold and heat. Levels of trehalose increased during dehydration and are likely a major factor increasing subsequent cold and heat resistance. This hypothesis was also supported by experimental results showing that injection of trehalose enhanced resistance to temperature stress and dehydration. We conclude that changes in temperature tolerance in B. antarctica are linked to the rate and severity of dehydration and that trehalose elevation is a probable mechanism enhancing this form of cross tolerance.  相似文献   

2.
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.  相似文献   

3.
During the late 1960s, larvae of the flightless midge Eretmoptera murphyi Schaeffer were accidentally transferred from the sub‐Antarctic island of South Georgia to Signy Island in the maritime Antarctic. Higher insects are rare in the Antarctic and the introduction and establishment of a new species is an unusual event. The fly has overcome the two major barriers to colonization of the Antarctic by new species: the geographical isolation of the region and its severe climate. Larvae of the flightless midge overwinter in the surface layers of soil on Signy Island where the temperature may fall to below ?10 °C, compared with as little as ?1.5 °C on South Georgia. This suggests the possession of a level of pre‐adaption to colder conditions. Summer‐collected larvae have a supercooling point (SCP or whole body freezing point) of approximately ?5.0 °C but survive experimental exposure to ?13 °C, giving them a level of freeze tolerance. After acclimation at ?4 °C for 4 days, the SCP changes little but the temperature at which 50% of the population would die decreases to lower than ?19 °C. Larvae are also resistant to dehydration. Under experimental conditions of 88% relative humidity at 5 °C, larvae lose water linearly (0.42% h?1) over the first 30 h but resist further water loss once their water content decreases to approximately 1.4 g g?1 dry weight. All larvae survive these conditions for the duration of the experiment (55 h). Eretmoptera murphyi is well adapted to survive on Signy Island, and these studies suggest that it has the ability to survive at more extreme locations at higher latitudes if it were to be inadvertently transferred to a suitable habitat.  相似文献   

4.
We investigated molecular responses elicited by three types of dehydration (fast, slow and cryoprotective), rehydration and overhydration in larvae of the Antarctic midge, Belgica antarctica. The larvae spend most the year encased in ice but during the austral summer are vulnerable to summer storms, osmotic stress from ocean spray and drying conditions due to wind and intense sunlight. Using suppressive subtractive hybridization (SSH), we obtained clones that were potentially responsive to dehydration and then used northern blots to evaluate the gene’s responsiveness to different dehydration rates and hydration states. Among the genes most responsive to changes in the hydration state were those encoding heat shock proteins (smHsp, Hsp70, Hsp90), antioxidants (superoxide dismutase, catalase), detoxification (metallothionein, cytochrome p450), genes involved in altering cell membranes (fatty acid desaturase, phospholipase A2 activating protein, fatty acyl CoA desaturase) and the cytoskeleton (actin, muscle-specific actin), and several additional genes including a zinc-finger protein, pacifastin and VATPase. Among the three types of dehydration evaluated, fast dehydration elicited the strongest response (more genes, higher expression), followed by cryoprotective dehydration and slow dehydration. During rehydration most, but not all, genes that were expressed during dehydration continued to be expressed; fatty acid desaturase was the only gene to be uniquely upregulated in response to rehydration. All genes examined, except VATPase, were upregulated in response to overhydration. The midge larvae are thus responding quickly to water loss and gain by expressing genes that encode proteins contributing to maintenance of proper protein function, protection and overall cell homeostasis during times of osmotic flux, a challenge that is particularly acute in this Antarctic environment.  相似文献   

5.
Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2‐DE and nanoscale capillary LC/MS/MS. Twenty‐four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration‐regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.  相似文献   

6.
The availability of water is recognized as the most important determinant of the distribution and activity of terrestrial organisms within the maritime Antarctic. Within this environment, arthropods may be challenged by drought stress during both the austral summer, due to increased temperature, wind, insolation, and extended periods of reduced precipitation, and the winter, as a result of vapor pressure gradients between the surrounding icy environment and the body fluids. The purpose of the present study was to assess the desiccation tolerance of the Antarctic springtail, Cryptopygus antarcticus, under ecologically-relevant conditions characteristic of both summer and winter along the Antarctic Peninsula. In addition, this study examined the physiological changes and effects of mild drought acclimation on the subsequent desiccation tolerance of C. antarcticus. The collembolans possessed little resistance to water loss under dry air, as the rate of water loss was >20% h(-1) at 0% relative humidity (RH) and 4 degrees C. Even under ecologically-relevant desiccating conditions, the springtails lost water at all relative humidities below saturation (100% RH). However, slow dehydration at high RH dramatically increased the desiccation tolerance of C. antarcticus, as the springtails tolerated a greater loss of body water. Relative to animals maintained at 100% RH, a mild drought acclimation at 98.2% RH significantly increased subsequent desiccation tolerance. Drought acclimation was accompanied by the synthesis and accumulation of several sugars and polyols that could function to stabilize membranes and proteins during dehydration. Drought acclimation may permit C. antarcticus to maintain activity and thereby allow sufficient time to utilize behavioral strategies to reduce water loss during periods of reduced moisture availability. The springtails were also susceptible to desiccation at subzero temperatures in equilibrium with the vapor pressure of ice; they lost approximately 40% of their total body water over 28 d when cooled to -3.0 degrees C. The concentration of solutes in the remaining body fluids as a result of dehydration, together with the synthesis of several osmolytes, dramatically increased the body fluid osmotic pressure. This increase corresponded to a depression of the melting point to approximately -2.2 degrees C, and may therefore allow C. antarcticus to survive much of the Antarctic winter in a cryoprotectively dehydrated state.  相似文献   

7.
《Autophagy》2013,9(4):629-631
  相似文献   

8.
Intense ultraviolet radiation, coupled with frequent bouts of freezing-thawing and anoxia, have the potential to generate high levels of oxidative stress in Antarctic organisms. In this study, we examined mechanisms used by the Antarctic midge, Belgica antarctica, to counter oxidative stress. We cloned genes encoding two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (Cat), and showed that SOD mRNA was expressed continuously and at very high levels in larvae, but not in adults, while Cat mRNA was expressed in both larvae and adults but at a somewhat reduced level. SOD mRNA was expressed at even higher levels in larvae that were exposed to direct sunlight. Catalase, a small heat shock protein, Hsp70 and Hsp90 mRNAs were also strongly upregulated in response to sunlight. Total antioxidant capacity of the adults was higher than that of the larvae, but levels in both stages of the midge were much higher than observed in a freeze-tolerant, temperate zone insect, the gall fly Eurosta solidaginis. Assays to measure oxidative damage (lipid peroxidation TBARS and carbonyl proteins) demonstrated that the Antarctic midge is highly resistant to oxidative stress.  相似文献   

9.
1. Early‐season flooding and ice entrapment at sub‐zero temperatures pose significant challenges to any polar terrestrial invertebrate. 2. The chironomid midge, Eretmoptera murphyi, is native to the sub‐Antarctic island of South Georgia and has been introduced to the maritime Antarctic (Signy Island). While the majority of its 2‐year life cycle is spent as a terrestrial larva, it is found in habitats potentially exposed to prolonged flooding. 3. The current study explored the tolerance of the larvae to extended submergence, demonstrating survival for at least 28 days, underlain by their ability to respire (oxy‐regulate) whilst submerged. To date, this ability is not known to be shared by any other terrestrial midge. Larvae also demonstrated notable anoxia tolerance whilst encased in ice, surviving for up to 28 days. 4. These data indicate a capacity to survive ecologically relevant periods of submergence and/or ice entrapment, such as may be experienced in their natural habitats.  相似文献   

10.
The environmental physiology of Antarctic terrestrial nematodes: a review   总被引:10,自引:1,他引:9  
The environmental physiology of terrestrial Antarctic nematodes is reviewed with an emphasis on their cold-tolerance strategies. These nematodes are living in one of the most extreme environments on Earth and face a variety of stresses, including low temperatures and desiccation. Their diversity is low and declines with latitude. They show resistance adaptation, surviving freezing and desiccation in a dormant state but reproducing when conditions are favourable. At high freezing rates in the surrounding medium the Antarctic nematode Panagrolaimus davidi freezes by inoculative freezing but can survive intracellular freezing. At slow freezing rates this nematode does not freeze but undergoes cryoprotective dehydration. Cold tolerance may be aided by rapid freezing, the production of trehalose and by an ice-active protein that inhibits recrystallisation. P. davidi relies on slow rates of water loss from its habitat, and can survive in a state of anhydrobiosis, perhaps aided by the ability to synthesise trehalose. Teratocephalus tilbrooki and Ditylenchus parcevivens are fast-dehydration strategists. Little is known of the osmoregulatory mechanisms of Antarctic nematodes. Freezing rates are likely to vary with water content in Antarctic soils. Saturated soils may produce slow freezing rates and favour cryoprotective dehydration. As the soil dries freezing rates may become faster, favouring freezing tolerance. When the soil dries completely the nematodes survive anhydrobiotically. Terrestrial Antarctic nematodes thus have a variety of strategies that ensure their survival in a harsh and variable environment. We need to more fully understand the conditions to which they are exposed in Antarctic soils and to apply more natural rates of freezing and desiccation to our studies.Communicated by: I.D. Hume  相似文献   

11.
Liang Y  Sun WQ 《Plant physiology》2002,128(4):1323-1331
Rate of dehydration greatly affects desiccation tolerance of recalcitrant seeds. This effect is presumably related to two different stress vectors: direct mechanical or physical stress because of the loss of water and physicochemical damage of tissues as a result of metabolic alterations during drying. The present study proposed a new theoretic approach to represent these two types of stresses and investigated how seed tissues responded differently to two stress vectors, using the models of isolated cocoa (Theobroma cacao) and ginkgo (Ginkgo biloba) embryonic tissues dehydrated under various drying conditions. This approach used the differential change in axis water potential (DeltaPsi/Deltat) to quantify rate of dehydration and the intensity of direct physical stress experienced by embryonic tissues during desiccation. Physicochemical effect of drying was expressed by cumulative desiccation stress [integralf(psi,t)], a function of both the rate and time of dehydration. Rapid dehydration increased the sensitivity of embryonic tissues to desiccation as indicated by high critical water contents, below which desiccation damage occurred. Cumulative desiccation stress increased sharply under slow drying conditions, which was also detrimental to embryonic tissues. This quantitative analysis of the stress-time-response relationship helps to understand the physiological basis for the existence of an optimal dehydration rate, with which maximum desiccation tolerance could be achieved. The established numerical analysis model will prove valuable for the design of experiments that aim to elucidate biochemical and physiological mechanisms of desiccation tolerance.  相似文献   

12.
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.  相似文献   

13.
Abstract. Drought avoidance due to cuticular control increases with leaf number to a maximum in the intermediate leaves, decreasing to a minimum in the upper leaves. Dehydrated intermediate leaves do not rehydrate detectably when floated on water for several days. Excision of their petioles when submerged, permits full rehydration, presumably via the xylem. Stressing the plant by withholding water for 1–3 weeks fails to increase this already high resistance to water movement through the leaf surface. It does, however, markedly decrease the loss of water from the fully rehydrated (100% RWC) leaves during the first hour of dehydration, presumably due to a more rapid stomatal closure than in the non-stressed leaves. Dehydration tolerance increases with leaf number, without an intermediate maximum. The intermediate and upper leaves were markedly more tolerant of dehydration after drought-induced stress than when non-stressed. Dehydration tolerance in some cases, was inversely proportional to dehydration rate. It was possible, however, to equalize the rates of dehydration of drought-stressed and non-drought-stressed leaves without affecting the greater tolerance of the drought-stressed leaves. Dehydration avoidance by osmotic adjustment was markedly developed in the slowly dehydrated attached leaves of drought-stressed plants, but not in the rapidly dehydrated excised leaves. This is evidence of drought acclimation. It must, therefore, be concluded that the slow dehydration of the drought-stressed plants also leads to the increase in dehydration tolerance by permitting drought-induced acclimation. The overall drought resistance of cabbage leaves depends on the three components: drought avoidance, dehydration avoidance and dehydration tolerance. The latter two increase during acclimation but the cuticular control of drought avoidance does not.  相似文献   

14.
Nondiapausing larvae of the flesh fly, Sarcophaga bullata, responded to several forms of short-term environmental stress (low temperature, anoxia and desiccation) by accumulating glycerol. Elevation of this polyol, regardless of the type of stress that induced accumulation, conferred cold resistance: larvae with high glycerol levels were 3-4 times more tolerant of a 2h exposure to -10 degrees C than unstressed larvae. Protection against low temperature injury, as well as dehydration, was also attained by injection of exogenous glycerol into third instar larvae. This artificially induced cold hardiness was only temporary: when glycerol-injected larvae were exposed to -10 degrees C immediately after injection, survival was high, but none survived if they were injected and then held at 25 degrees C for 2 days before the -10 degrees C exposure. Larvae ligated behind the brain immediately after low temperature exposure failed to accumulate glycerol, but glycerol did accumulate in larvae ligated 6-24h after cold treatment, thus implying a critical role for the brain in initiating glycerol production. Interestingly, a much shorter exposure (2h) to low temperature was sufficient to reduce the maximum rate of water loss. Collectively, these observations suggest that multiple pathways may be exploited in response to stress: one pathway is most likely associated with rapid cold hardening (RCH) which generates immediate protection, and a second pathway remains activated for a longer period to enhance the initial protection afforded by glycerol.  相似文献   

15.
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after.  相似文献   

16.
17.
In many insects, the rapid cold-hardening (RCH) response significantly enhances cold tolerance in minutes to hours. Larvae of the Antarctic midge, Belgica antarctica, exhibit a novel form of RCH, by which they increase their freezing tolerance. In this study, we examined whether cold-sensing and RCH in B. antarctica occur in vitro and whether calcium is required to generate RCH. As demonstrated previously, 1 h at -5 degrees C significantly increased organismal freezing tolerance at both -15 degrees C and -20 degrees C. Likewise, RCH enhanced cell survival of fat body, Malpighian tubules, and midgut tissue of larvae frozen at -20 degrees C. Furthermore, isolated tissues retained the capacity for RCH in vitro, as demonstrated with both a dye exclusion assay and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based viability assay, thus indicating that cold-sensing and RCH in B. antarctica occur at the cellular level. Interestingly, there was no difference in survival between tissues that were supercooled at -5 degrees C and those frozen at -5 degrees C, suggesting that temperature mediates the RCH response independent of the freezing of body fluids. Finally, we demonstrated that calcium is required for RCH to occur. Removing calcium from the incubating solution slightly decreased cell survival after RCH treatments, while blocking calcium with the intracellular chelator BAPTA-AM significantly reduced survival in the RCH treatments. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) also significantly reduced cell survival in the RCH treatments, thus supporting a role for calcium in RCH. This is the first report implicating calcium as an important second messenger in the RCH response.  相似文献   

18.
Do organisms make beneficial physiological adjustments in response to environmental change? We examined this question by measuring the effects of short-term (12-36 h) and long-term (larval lifetime) hydric stress on the tobacco hornworm, Manduca sexta. Larvae were reared from the first instar on low-water (69%) or high-water (80%) artificial diets and then transferred early in the fifth instar to the same or opposite diet (2x2 design). Within the subsequent 36 h, we measured 24-h growth rates and three primary determinants of the water budget: water gain via consumption and water loss via evaporation and defecation. Larvae preexposed to low-water diet grew less rapidly on low-water diet than those switched acutely to low-water diet from high-water diet, showing that larvae preexposed to a particular environment do not necessarily acclimate beneficially to that environment. Our data on water fluxes to and from larvae, however, strongly suggest that water-stressed larvae did make beneficial physiological adjustments. Larvae responded to short-term hydric stress by minimizing rates of water excretion, primarily by increasing rates of rectal water absorption. Larvae responded to chronic water stress by significantly reducing rates of evaporative water loss; they also showed additional reductions in fecal water excretion, but these decreases were due to lowered consumption and not to further increases in rate of rectal water absorption. This mismatch between maladaptive acclimation of organismal performance and beneficial adjustment of suborganismal traits can be reconciled by recognizing that organismal physiology is hierarchical: fitness-related performance traits represent the aggregate outcome of numerous, more mechanistic physiological traits. Although chronic exposure to an environment may depress the aggregate effect of these mechanistic traits on performance, organisms are not precluded from making beneficial adjustments to individual traits contributing to performance.  相似文献   

19.
The ability to cryopreserve a stage of Anopheles mosquitoes would facilitate the development of strains incapable of transmitting malaria. Cryopreservation requires that the freezable water in cell systems be removed or rendered incapable of undergoing ice formation. The present study was concerned with the rate at which water is removed from lst instar larvae of Anopheles gambiae by air-drying, with the extent of dehydration that the larvae will tolerate, and with the effect of trehalose and sucrose on both drying kinetics and survival. Eighty-one percent of the larvae are water. Air-drying removes 90% of that water in approximately 20 min. Survivals after partial dehydration are highest if the larvae are rehydrated in 1/2x isotonic saline (0.13 osm); they are poorest if rehydrated in water or 0.13 osm sucrose. In the former, about 34% survive the removal of half the water, but next to none survive the loss of >70% initial water. Prior exposure to 0.2 M trehalose for as little as 1 min slows the drying rate and increases the tolerance of the larvae to dehydration. With 30-min exposure, 88% survive the loss of 50% of their water and 63% survive the loss of 75%. Protection is abolished with 0.4 M trehalose. The results are similar with sucrose. It is substantially reduced if sugar-exposed larvae are briefly washed with water prior to drying. The protection appears not to be related to the decreased drying rate. Rather it appears related, by an unknown mechanism, to the presence of sugar on the outer surface of the larvae.  相似文献   

20.
Water balance mechanisms have been investigated in desert Drosophila species of the subgenus Drosophila from North America, but changes in mesic species of subgenus Drosophila from other continents have received lesser attention. We found divergent strategies for coping with desiccation stress in two species of immigrans group--D. immigrans and D. nasuta. In contrast to clinal variation for body melanization in D. immigrans, cuticular lipid mass showed a positive cline in D. nasuta across a latitudinal transect (10°46'-31°43'N). Based on isofemale lines variability, body melanization showed positive correlation with desiccation resistance in D. immigrans but not in D. nasuta. The use of organic solvents has supported water proofing role of cuticular lipids in D. nasuta but not in D. immigrans. A comparative analysis of water budget of these two species showed that higher water content, reduced rate of water loss and greater dehydration tolerance confer higher desiccation resistance in D. immigrans while the reduced rate of water loss is the only possible mechanism to enhance desiccation tolerance in D. nasuta. We found that carbohydrates act as metabolic fuel during desiccation stress in both the species, whereas their rates of utilization differ significantly between these two species. Further, acclimation to dehydration stress improved desiccation resistance due to increase in the level of carbohydrates in D. immigrans but not in D. nasuta. Thus, populations of D. immigrans and D. nasuta have evolved different water balance mechanisms under shared environmental conditions. Multiple measures of desiccation resistance in D. immigrans but reduction in water loss in D. nasuta are consistent with their different levels of adaptive responses to wet and dry conditions on the Indian subcontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号