首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2',3'-Dideoxy-3'-thiacytidine (+/-)-SddC) was found to have potent activity against human hepatitis B virus as well as human immunodeficiency viruses in culture. The (-)form ((-)-SddC) which is resistant to deoxycytidine deaminase was found to be the more active antiviral stereoisomer than the (+)-form ((+)-SddC). The (+)-SddC is susceptible to deamination by deoxycytidine deaminase and is 25- and 12-fold more toxic than (-)-SddC in CEM cells in terms of anti-cell growth and anti-mitochondrial DNA synthesis, respectively. Similar results were obtained using a mixture of their 5-fluoro analogs ((+/-)-FSddC). Unlike 2',3'-dideoxycytidine, which is a potent inhibitor of mitochondrial DNA synthesis and results in such delayed toxicity as peripheral neuropathy with long term usage, (-)-SddC does not affect mitochondrial DNA synthesis. The (-)form is phosphorylated to (-)-SddCMP and is subsequently converted to (-)-SddCDP and (-)-SddCTP. One additional major metabolite which has been tentatively assigned the name "(-)-SddCMP sialate" was also identified. No significant difference in terms of the profiles of the metabolites was found between 4 and 24 h. There is an appreciable amount of (-)-SddCTP detectable 24 h after removal of the drug. (-)-SddCTP was also found to be approximately 3-fold more potent than (+)-SddCTP in inhibiting human hepatitis B virus DNA polymerase. This is the first nucleoside analog with the unnatural sugar configuration demonstrated to have antiviral activity.  相似文献   

2.
3.
Herpes simplex virus (HSV) DNA polymerase was isolated on a large-scale from African green monkey kidney cells infected with HSV type 1 (HSV-1) strain Angelotti. After DNA-cellulose chromatography the enzyme showed a specific activity of 48,000 units/mg protein. Three major single polypeptides with molecular weights of 144,000, 74,000 and 29,000 were copurified with the enzyme activity at the DNA-cellulose ste. By its chromatographic behavior and by template studies, the HSV DNA polymerase activity was clearly distinguishable from cellular alpha, beta and gamma DNA polymerase activities. Two exonucleolytic activities were found in the DNA-cellulose enzyme preparation. The main exonucleolytic activity, which degraded both single-stranded and double-stranded DNA to deoxynucleoside 5'-monophosphates, was separated by subsequent velocity sedimentation. The remaining exonucleolytic activity was not separable from the HSV DNA polymerase by several chromatographic steps and by velocity sedimentation at high ionic strength. This novel exonuclease and HSV DNA polymerase were equally sensitive both to phosphonoacetic acid and Zn2+ ions, inhibitors of the viral polymerase. Similar to the 3'-to-5'-exonuclease of procaryotic DNA polymerases and mammalian DNA polymerase delta, the HSV-polymerase-associated exonuclease catalyzed the removal of 3'-terminal nucleotides from the primer/template as well as the template-dependent conversion of deoxynucleoside triphosphates to monophosphates.  相似文献   

4.
5.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine 5'-triphosphate (BrVdUTP) and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil 5'-triphosphate (BrVarafUTP), which are known as specific inhibitors of herpes simplex viral (type 1 and 2) DNA polymerase, were found to be strong inhibitors of DNA polymerase gamma from human KB and murine myeloma cells. In fact BrVdUTP and BrVarafUTP were found to be stronger inhibitors of DNA polymerase gamma than of other DNA polymerases having viral (herpes simplex virus or retrovirus) origin or cellular (eukaryotic alpha and beta, or prokaryotic) origin. The mode of inhibition of DNA polymerase gamma by BrVdUTP and BrVarafUTP was competitive with respect to dTTP, the normal substrate. Whereas BrVdUTP was an efficient substrate for DNA polymerase gamma and other DNA polymerases that were examined, BrVarafUTP failed to serve as a substrate for DNA synthesis. Ki values for BrVdUTP (40 nM) and BrVarafUTP (7 nM) with DNA polymerase gamma, as determined with (rA)n.(dT) as the template.primer, were much smaller than the Km values for dTTP (0.16 microM and 0.71 microM for murine and human DNA polymerase gamma, respectively). Thus, the affinity of BrVdUTP or BrVarafUTP for DNA polymerase gamma was much stronger than that of dTTP.  相似文献   

6.
The ability of human alpha and beta DNA polymerases and herpes simplex virus type 2 (HSV-2) and human cytomegalovirus (HCMV) DNA polymerases to insert and extend several nucleotide analogs has been investigated using a variation of Sanger-Coulson DNA sequencing technology. The analogs included the triphosphates of two antiviral nucleosides with incomplete sugar rings: 9-(1,3-dihydroxy-2-propoxymethyl)guanine (dhpG) and 9-(2-hydroxyethoxymethyl)guanine (acyG or acyclovir), as well as dideoxy and arabinosyl nucleoside triphosphates. Three pairs of contrasting behaviors were found, each pair distinguishing the two human polymerases from the two viral ones: first, extension behavior with araNTPs; second, insertion/extension behavior with dhpGTP; and third, the relative preference for insertion of ddGTP versus acyGTP. The relative level of insertion of the nucleotide analogs by HCMV and HSV-2 DNA polymerases was dhpGTP greater than (acyGTP and araNTP) greater than ddGTP, whereas by human alpha polymerase it was araATP greater than ddGTP much greater than (acyGTP and dhpGTP) and by human beta polymerase it was (araATP and ddGTP) much greater than (acyGTP and dhpGTP). Evidence is presented for three mechanisms of inhibition by extendible nucleotides (of dhp and ara types) exhibiting frequent internalization: araATP acted as a simple pseudoterminator of alpha and beta polymerases, but was easily extended past singlet sites by Herpesviridae polymerases and only stalled at sites requiring two or more araATP insertions in a row. Herpesviridae polymerases stalled after adding dhpGMP and one additional nucleotide, suggesting that polymerase translocation problems may be a factor in polymerase inhibition by modified sugar nucleotide analogs. The amino acid sequence of the human alpha DNA polymerase, which is acyGTP resistant, was found to vary by one amino acid from the amino sequences of the Herpesviridae polymerases in a region of significant similarity and probable functional homology. Amino acid differences at that same site differentiate acyclovir-resistant HSV-1 mutants from the acyclovir-sensitive HSV-1 wild type.  相似文献   

7.
8.
The ability of herpes simplex virus type 1 (HSV-1) DNA polymerase, HeLa polymerase alpha, and HeLa polymerase beta to utilize several dGTP analogues has been investigated using a defined synthetic template primer. The relative efficiencies of the triphosphates of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir triphosphate, ACVTP), 9-[(1,3-dihydroxy-2-propoxy)methyl] guanine (ganciclovir triphosphate, DHPGTP), and 2',3'-dideoxyguanosine (ddGTP) as substrates for the three polymerases were: HSV-1 polymerase, dGTP greater than ACVTP approximately equal to DHPGTP greater than ddGTP; polymerase alpha, dGTP greater than ACVTP approximately equal to DHPGTP much greater than ddGTP; polymerase beta, ddGTP greater than dGTP much greater than ACVTP approximately equal to DHPGTP. The potent inhibition of HSV-1 polymerase by ACVTP has been shown previously to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3' end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism was shown here to be a general mechanism for inhibition of polymerases by the obligate chain terminators, ACVTP and ddGTP. The ACVTP-induced inhibition was 30-fold more potent with HSV-1 polymerase than with polymerase alpha. This difference may contribute to the antiviral selectivity of this nucleotide analogue. The effect of ganciclovir monophosphate incorporation (a nonobligate chain terminator) on subsequent primer extension was also evaluated. With HSV-1 polymerase and polymerase alpha, although there was a considerable reduction in the efficiency of utilization of the 3'-DHPGMP-terminal primer, contrasting kinetic behavior was observed. With HSV-1 polymerase, insertion of DHPGTP resulted in a significant reduction in Vmax for subsequent nucleotide incorporations. In contrast, with polymerase alpha, a relatively small decrease in Vmax was accompanied by increased Km values for subsequent nucleotide incorporations.  相似文献   

9.
The nucleoside analog 2',3'-dideoxycytidine (ddCyd) has been shown to inhibit the infectivity and cytopathic effect of human immunodeficiency virus on human OKT4+ lymphocytes in vitro. Metabolism of ddCyd by human T-lymphoblastic cells (Molt 4) negative for human immunodeficiency virus and OKT4 was examined. Molt 4 cells accumulated ddCyd and its phosphorylated derivatives into acid-soluble and acid-insoluble material in a dose-dependent manner. For each concentration tested, 2',3'-dideoxycytidine triphosphate represented 40% of the total acid-soluble pool of ddCyd metabolites. Uptake of 5 microM ddCyd was linear for 4 h after addition of drug. Efflux of ddCyd metabolites from cells followed a biphasic course with an initial retention half-life of 2.6 h for 2',3'-dideoxycytidine triphosphate. DNA, but not RNA, of cells incubated with [3H]ddCyd became radiolabeled. Nuclease and phosphatase treatment of DNA followed by reverse-phase high pressure liquid chromatography showed that the nucleoside was incorporated into DNA in its original form. ddCyd was not susceptible to deamination by human Cyd-dCyd deaminase. It was a poor substrate for human cytoplasmic and mitochondrial dCyd kinases, with Km values of 180 +/- 30 and 120 +/- 20 microM, respectively. DNA polymerases alpha, beta, and gamma varied in their sensitivity to inhibition by ddCTP with Ki values of 110 +/- 40, 2.6 +/- 0.3, and 0.016 +/- 0.008 microM, respectively; however, inhibition was competitive with dCTP in each case.  相似文献   

10.
11.
12.
Mode of inhibition of herpes simplex virus DNA polymerase by phosphonoacetate.   总被引:19,自引:0,他引:19  
J C Mao  E E Robishaw 《Biochemistry》1975,14(25):5475-5479
  相似文献   

13.
The antiviral compound 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (2'-nor-2'-deoxyguanosine, 2'-NDG) is phosphorylated by the HSV-1-induced thymidine kinase to the monophosphate (2'-NDG-MP) and this is further phosphorylated by cellular kinases to the triphosphate (2'-NDG-TP) which is a potent inhibitor of DNA polymerases. Since phosphorylation of 2'-NDG creates a chiral center in the molecule, it was of interest to examine whether both monophosphate enantiomers were produced by the viral thymidine kinase, whether they both could be further phosphorylated by cellular kinases and, if so, whether the respective triphosphates were equally inhibitory to the DNA polymerases. The time course of the phosphorylation by GMP kinase of a chemically synthesized, racemic 2'-NDG-MP was compared to that of a 2'-NDG-MP preparation obtained by enzymatic phosphorylation of 2'-NDG with HSV-1 thymidine kinase. The results indicated that the two enantiomeric monophosphates were phosphorylated by GMP kinase with different rates and that phosphorylation of 2'-NDG by HSV-1 thymidine kinase gave only one of the isomers, whose structure was determined to be S. Both enantiomeric diphosphates were further phosphorylated to the respective triphosphates and it was shown that, in contrast to the triphosphate obtained from the 2'-NDG-MP prepared by viral thymidine kinase which was a potent inhibitor of HSV-1 DNA polymerase, the triphosphate obtained from the slow-reacting R isomer had little or no inhibitory activity against this enzyme.  相似文献   

14.
15.
3'-NH2-BV-dUrd, the 3'-amino derivative of (E)-5-(2-bromovinyl)-2'-deoxyuridine, was found to be a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) replication. 3'-NH2-BV-dUrd was about 4-12 times less potent but equally selective in its anti-herpes activity as BV-dUrd. Akin to BV-dUrd, 3'-NH2-BV-dUrd was much less inhibitory to herpes simplex virus type 2 than type 1. It was totally inactive against a thymidine kinase-deficient mutant of HSV-1. The 5'-triphosphate of 3'-NH2-BV-dUrd (3'-NH2-BV-dUTP) was evaluated for its inhibitory effects on purified herpes viral and cellular DNA polymerases. Among the DNA polymerases tested, HSV-1 DNA polymerase and DNA polymerase alpha were the most sensitive to inhibition by 3'-NH2-BV-dUTP (Ki values 0.13 and 0.10 microM, respectively). The Km/Ki ratio for DNA polymerase alpha was 47, as compared with 4.6 for HSV-1 DNA polymerase. Thus, the selectivity of 3'-NH2-BV-dUrd as an anti-herpes agent cannot be ascribed to a discriminative effect of its 5'-triphosphate at the DNA polymerase level. This selectivity most probably resides at the thymidine kinase level. 3'-NH2-BV-dUrd would be phosphorylated preferentially by the HSV-1-induced thymidine kinase (Ki 1.9 microM, as compared with greater than 200 microM for the cellular thymidine kinase), and this preferential phosphorylation would confine the further action of the compound to the virus-infected cell.  相似文献   

16.
9-beta-(2'-Azido-2'-deoxy-D-arabiofuranosyl)adenine (arazide) causes greater and significantly more persistent inhibition of [3H]-thymidine incorporation into the DNA of neoplastic cells than the related agent 9-beta-D-arabinofuranosyladenine (araA). To elucidate the mechanism(s) responsible, we compared the effects of arazide and araA 5'-triphosphates on DNA polymerases alpha and beta of L1210 leukemia cells. Both nucleoside triphosphate analogs inhibited DNA polymerase alpha activity by competing with dATP; only araATP was inhibitory to DNA polymerase beta. Arazide triphosphate was at least four times more active than araATP as an inhibitor of DNA polymerase alpha. Preincubation of DNA polymerase alpha with either agent did not result in enzyme inactivation. The results suggest that interference with DNA polymerase alpha activity by arazide triphosphate may be in part responsible for the inhibition of DNA synthesis produced by arazide in neoplastic cells.  相似文献   

17.
The triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine were examined for their inhibitory effect on highly purified cellular DNA polymerase alpha and human cytomegalovirus (Towne strain)-induced DNA polymerase. These two nucleoside triphosphates competitively inhibited the incorporation of dGMP into DNA catalyzed by the DNA polymerases. The virus-induced DNA polymerase had greater binding affinity for the triphosphate of 9-(2-hydroxyethoxymethyl)guanine (Ki, 8 nM) than for the triphosphate of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (Ki, 22 nM), although the nucleoside of the latter compound was strikingly more effective against human cytomegalovirus replication in cell cultures than the nucleoside of the former. The Ki values of these two nucleoside triphosphates for alpha polymerase were 96 and 146 nM, respectively, and were 7- to 12-fold higher than those for the virus-induced enzyme. These data indicated that virus-induced DNA polymerase was more sensitive to inhibition by these two nucleoside triphosphates than was the cellular alpha enzyme.  相似文献   

18.
19.
The antiviral compound 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (2′-nor-2′-deoxyguanosine, 2′-NDG) is phosphorylated by the HSV-1-induced thymidine kinase to the monophosphate (2′-NDG-MP) and this is further phosphorylated by cellular kinases to the triphosphate (2′-NDG-TP) which is a potent inhibitor of DNA polymerases. Since phosphorylation of 2′-NDG creates a chiral center in the molecule, it was of interest to examine whether both monophosphate enantiomers were produced by the viral thymidine kinase, whether they both could be further phosphorylated by cellular kinases and, if so, whether the respective triphosphates were equally inhibitory to the DNA polymerases. The time course of the phosphorylation by GMP kinase of a chemically synthesized, racemic 2′-NDG-MP was compared to that of a 2′-NDG-MP preparation obtained by enzymatic phosphorylation of 2′-NDG with HSV-1 thymidine kinase. The results indicated (a) that the two enantiomeric monophosphates were phosphorylated by GMP kinase with different rates and (b) that phosphorylation of 2′-NDG by HSV-1 thymidine kinase gave only one of the isomers, whose structure was determined to be S. Both enantiomeric diphosphates were further phosphorylated to the respective triphosphates and it was shown that, in contrast to the triphosphate obtained from the 2′-NDG-MP prepared by viral thymidine kinase which was a potent inhibitor of HSV-1 DNA polymerase, the triphosphate obtained from the slow-reacting R isomer had little or no inhibitory activity against this enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号