首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

2.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

3.
We determined the dissociation constant (Kd) of a series of nucleotides for the bovine skeletal muscle type II catalytic subunit by displacing lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) with increasing concentrations of competing nucleotide. The Kd of each nucleotide was calculated from the decreases in the fluorescence polarization of lin-benzo-ADP that accompany its displacement from the catalytic subunit. We found that modifications of the adenine moiety reduce nucleotide affinity for the enzyme. The effect was most pronounced with modifications at position 6 of the base. Replacement of the 3'-hydroxyl group of ribose with a hydrogen increased the affinity of the nucleotide; addition of phosphate to the 2'- or 3'-hydroxyl groups, on the other hand, decreased nucleotide affinity. MgATP and MgADP exhibited Kd's of about 10 microM. AMP, which contains a negatively charged alpha-phosphate, bound with reduced affinity (643 microM). Adenosine, which lacks a charged alpha-phosphate, bound with a higher affinity (32 microM). To learn more about the nature of the alpha-phosphate binding site, a series of uncharged and positively charged derivatives of the 5'-position on the ribose moiety was prepared. The uncharged derivatives bound with much greater affinity than the negatively charged AMP. The Kd's for 5'-tosyladenosine and 5'-iodo-5'-deoxyadenosine were 30 and 32 microM, respectively. Like the negatively charged AMP, positively charged derivatives also bound less tenaciously than the neutral species. The positively charged 5'-amino-5'deoxyadenosine, for example, exhibited a 15-fold higher Kd (506 microM) than the neutral congenors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We searched for new fluorescent probes of catalytic-site nucleotide binding in F(1)F(0)-ATP synthase by introducing Cys mutations at positions in or close to catalytic sites and then reacting Cys-mutant F(1) with thiol-reactive fluorescent probes. Four suitable mutant/probe combinations were identified. beta F410C labeled by 7-fluorobenz-2-oxa-1,3-diazole-4-sulfonamide (ABD-F) gave very large signal changes in response to nucleotide, allowing facile measurement of fluorescence and nucleotide-binding parameters, not only in F(1) but also in F(1)F(0). The results are consistent with the presence of three asymmetric catalytic sites of widely different affinities, with similar properties in both enzymes, and revealed a unique probe environment at the high-affinity site 1. beta Y331C F(1) labeled by ABD-F gave a large signal which monitored catalytic site polarity changes that occur along the ATP hydrolysis pathway. Two other mutant/probe combinations with significant nucleotide-responsive signals were beta Y331C labeled by 5-((((2-iodoacetyl)amino)ethyl)amino)naphthaline-1-sulfonic acid and alpha F291C labeled by 2-4'-(iodoacetamido)anilino)naphthalene-6-sulfonic acid. The signal of the latter responds differentially to nucleoside diphosphate versus triphosphate bound in catalytic sites.  相似文献   

5.
In order to get insight into the origin of apparent negative cooperativity observed for F(1)-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F(1)-ATPase, alpha((W463F)3)beta((Y341W)3)gamma and alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma. For alpha((W463F)3)beta((Y341W)3)gamma, apparent K(m)'s of ATPase kinetics (4.0 and 233 microM) did not agree with apparent K(m)'s deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 microM). On the other hand, in case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, which lacks noncatalytic nucleotide binding sites, the apparent K(m) of ATPase activity (10 microM) roughly agreed with the highest K(m) of fluorescence measurements (27 microM). The results indicate that in case of alpha((W463F)3)beta((Y341W)3)gamma, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent K(m) of ATPase activity does not represent the ATP binding to a catalytic site. In case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, the K(m) of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma was rather linear compared with that of alpha((W463F)3)beta((Y341W)3)gamma, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F(1)-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed K(m)'s of 100-300 microM and 1-30 microM range for wild-type F(1)-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

6.
It has been reported that shifts in the fluorescence emission spectrum of the introduced tryptophans in the betaF155W mutant of Escherichia coli F(1) (bovine heart mitochondria F(1) residue number) can quantitatively distinguish between the number of catalytic sites occupied with ADP and ATP during steady-state ATP hydrolysis (Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem. 271, 18711--18718). In contrast, addition of MgADP, Mg-5'-adenylyl beta,gamma-imidophosphate (MgAMP-PNP), and MgATP in 1:1 ratios to the alpha(3)(betaF155W)(3)gamma subcomplex of thermophilic Bacillus PS3 F(1) (TF(1)) induced nearly identical blue shifts in the fluorescence emission maximum that was accompanied by quenching. Addition of 2 mm MgADP induced a slightly greater blue shift and a slight increase in intensity over those observed with 1:1 MgADP. However, addition of 2 mm MgAMP-PNP or MgATP induced a much greater blue shift and substantially enhanced fluorescence intensity over those observed in the presence of stoichiometric MgADP or MgAMP-PNP. It is clear from these results that the fluorescence spectrum of the introduced tryptophans in the betaF155W mutant of TF(1) does not respond in regular increments at any wavelength as catalytic sites are filled with nucleotides. The fluorescence spectrum observed after entrapping MgADP-fluoroaluminate complexes in two catalytic sites of the betaF155W subcomplex indicates that the fluorescence emission spectrum of the enzyme is maximally perturbed when nucleotides are bound to two catalytic sites. This finding is consistent with accumulating evidence suggesting that only two beta subunits in the alpha(3)beta(3)gamma subcomplex of TF(1) can simultaneously exist in the completely closed conformation.  相似文献   

7.
S Nadanaciva  J Weber  A E Senior 《Biochemistry》1999,38(24):7670-7677
Beta-Arg-182 in Escherichia coli F1-ATPase (beta-Arg-189 in bovine mitochondrial F1) is a residue which lies close to catalytic site bound nucleotide (Abrahams et al. (1994) Nature 370, 621-628). Here we investigated the role of this residue by characterizing two mutants, betaR182Q and betaR182K. Oxidative phosphorylation and steady-state ATPase activity of purified F1 were severely impaired by both mutations. Catalytic site nucleotide-binding parameters were measured using the fluorescence quench of beta-Trp-331 that occurred upon nucleotide binding to purified F1 from betaR182Q/betaY331W and betaR182K/betaY331W double mutants. It was found that (a) beta-Arg-182 interacts with the gamma-phosphate of MgATP, particularly at catalytic sites 1 and 2, (b) beta-Arg-182 has no functional interaction with the beta-phosphate of MgADP or with the magnesium of the magnesium-nucleotide complex in the catalytic sites, and (c) beta-Arg-182 is directly involved in the stabilization of the catalytic transition state. In these features the role of beta-Arg-182 resembles that of another positively charged residue in the catalytic site, the conserved lysine of the Walker A motif, beta-Lys-155. A further role of beta-Arg-182 is suggested, namely involvement in conformational change at the catalytic site beta-alpha subunit interface that is required for multisite catalysis.  相似文献   

8.
F1-ATPase is inactivated by entrapment of MgADP in catalytic sites and reactivated by MgATP or P(i). Here, using a mutant alpha(3)beta(3)gamma complex of thermophilic F(1)-ATPase (alpha W463F/beta Y341W) and monitoring nucleotide binding by fluorescence quenching of an introduced tryptophan, we found that P(i) interfered with the binding of MgATP to F(1)-ATPase, but binding of MgADP was interfered with to a lesser extent. Hydrolysis of MgATP by F(1)-ATPase during the experiments did not obscure the interpretation because another mutant, which was able to bind nucleotide but not hydrolyse ATP (alpha W463F/beta E190Q/beta Y341W), also gave the same results. The half-maximal concentrations of P(i) that suppressed the MgADP-inhibited form and interfered with MgATP binding were both approximately 20 mm. It is likely that the presence of P(i) at a catalytic site shifts the equilibrium from the MgADP-inhibited form to the enzyme-MgADP-P(i) complex, an active intermediate in the catalytic cycle.  相似文献   

9.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

10.
The influence of the epsilon-subunit on the nucleotide binding affinities of the three catalytic sites of Escherichia coli F1-ATPase was investigated, using a genetically engineered Trp probe in the adenine-binding subdomain (beta-Trp-331). The interaction between epsilon and F1 was not affected by the mutation. Kd for binding of epsilon to betaY331W mutant F1 was approximately 1 nM, and epsilon inhibited ATPase activity by 90%. The only nucleotide binding affinities that showed significant differences in the epsilon-depleted and epsilon-replete forms of the enzyme were those for MgATP and MgADP at the high-affinity catalytic site 1. Kd1(MgATP) and Kd1(MgADP) were an order of magnitude higher in the absence of epsilon than in its presence. In contrast, the binding affinities for MgATP and MgADP at sites 2 and 3 were similar in the epsilon-depleted and epsilon-replete enzymes, as were the affinities at all three sites for free ATP and ADP. Comparison of MgATP binding and hydrolysis parameters showed that in the presence as well as the absence of epsilon, Km equals Kd3. Thus, in both cases, all three catalytic binding sites have to be occupied to obtain rapid (Vmax) MgATP hydrolysis rates.  相似文献   

11.
W Chen  W D Frasch 《Biochemistry》2001,40(25):7729-7735
Site-directed mutants Y317C, Y317E, Y317F, Y317G, and Y317K were made to the catch-loop tyrosine on the beta subunit of the chloroplast F(1)-ATPase in Chlamydomonas. EPR spectra of VO(2+)-ATP bound to site 3 of CF(1) from wild type and mutants were obtained. Every mutant changed the (51)V hyperfine parameters of the VO(2+) bound at this site in the catalytically active conformation of the enzyme but had no effect on these parameters in the form that predominates when the enzyme activity is latent. These results indicate that this residue is a ligand to the metal of the Mg(2+)-nucleotide complex that binds to the empty catalytic site. The mutations also decreased the k(cat) of the ATPase activity to a much greater extent than k(cat)/K(M). Thus, these mutations limit the rate of product (Mg(2+)-ADP and phosphate) release in the ATPase direction or, conversely, the initial binding of substrates in the ATP synthesis direction. On the basis of these observations, coordination of betaY317 by Mg(2+)-ADP that binds to the empty catalytic site provides a means by which substrate binding could trigger gamma subunit rotation and consequent conformation changes of beta subunits during ATP synthesis.  相似文献   

12.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

13.
Terbium ions and terbium formycin triphosphate have been used to investigate the interactions between the cation and nucleotide binding sites of the sarcoplasmic reticulum Ca2+-ATPase. Three classes of Tb3+-binding sites have been found: a first class of low-affinity (Kd = 10 microM) corresponds to magnesium binding sites, located near a tryptophan residue of the protein; a second class of much higher affinity (less than 0.1 microM) corresponds to the calcium transport sites, their occupancy by terbium induces the E1 to E2 conformational change of the Ca2+-ATPase; a third class of sites is revealed by following the fluorescence transfer from formycin triphosphate (FTP) to terbium, evidencing that terbium ions can also bind into the nucleotide binding site at the same time as FTP. Substitution of H2O by D2O shows that Tb-FTP binding to the enzyme nucleotide site is associated with an important dehydration of the terbium ions associated with FTP. Two terbium ions, at least, bind to the Ca2+-ATPase in the close vicinity of FTP when this nucleotide is bound to the ATPase nucleotide site. Addition of calcium quenches the fluorescence signal of the terbium-FTP complex bound to the enzyme. Calcium concentration dependence shows that this effect is associated with the replacement of terbium by calcium in the transport sites, inducing the E2----E1 transconformation when calcium is bound. One interpretation of this fluorescence quenching is that the E1----E2 transition induces an important structural change in the nucleotide site. Another interpretation is that the high-affinity calcium sites are located very close to the Tb-FTP complex bound to the nucleotide site.  相似文献   

14.
The ATP synthases of eubacteria and eukaryotes possess a conserved tyrosine (beta 331) that is labeled by ATP analogs and is believed to be at the catalytic site. In this report, this tyrosine was replaced by Phe, Ser, Cys, Gly, and Ala in an attempt to determine its role in catalysis. Each of the beta 331 mutant strains assembled an ATP synthase. Membranes from the beta 331-Ser, -Cys, -Ala, or -Gly strains showed strongly attenuated ATP hydrolysis and ATP-driven proton-pumping activities. The beta 331-Phe membranes showed nearly normal ATPase and functional proton pumping. A new purification procedure yielding highly active unc+ F1 (ATPase rates greater than 1000 s-1) allowed rapid isolation of soluble F1-ATPases. Kinetic analyses of purified enzymes confirmed that the structural and functional properties of beta 331-Tyr can be substituted by Phe but not effectively by Ser, Cys, Ala, or Gly. Since all of the beta 331 mutant enzymes catalyzed measurable ATP hydrolysis, it is clear that beta 331-Tyr is not directly involved in the bond making-breaking steps of catalysis. The ability of the beta 331-Phe enzyme to rapidly bind and hydrolyze ATP, and the results with other beta 331 mutant enzymes, suggests that a residue with an aromatic character is required at this position.  相似文献   

15.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe exhibits an intrinsic tryptophan fluorescence sensitive to adenine nucleotides and inorganic phosphate [Divita, G., Di Pietro, A., Deléage, G., Roux, B., & Gautheron, D.C. (1991) Biochemistry 30, 3256-3262]. The present results indicate that the intrinsic fluorescence is differentially modified by nucleotide binding to either catalytic or noncatalytic sites. Guanine or hypoxanthine nucleotides, which selectively bind to the catalytic site, produce a hyperbolic saturation monitored by fluorescence quenching at 332 nm, the maximal emission wavelength. On the contrary, adenine nucleotides, which bind to both catalytic and noncatalytic sites, exhibit a biphasic saturation. High-affinity ATP binding produces a marked quenching as opposed to the lower-affinity one. In contrast, ADP exhibits a sigmoidal saturation, with high-affinity binding producing no quenching but responsible for positive cooperativity of binding to the lower-affinity site. The catalytic-site affinity for GDP is almost 20-fold higher at pH 5.0 as compared to pH 9.0, and the high sensitivity of the method allows detection of the 10-fold lower-affinity GMP binding. In contrast, high-affinity binding of ADP, or AMP, is not pH-dependent. The selective catalytic-site saturation induces a F1 conformational change decreasing the Stern-Volmer constant for acrylamide and the tryptophan fraction accessible to iodide. ATP saturation of both catalytic and noncatalytic sites produces an additional reduction of the accessible fraction to acrylamide.  相似文献   

16.
By using a lactose permease mutant containing a single Cys residue in place of Val 331 (helix X), conformational changes induced by ligand binding were studied. With right-side-out membrane vesicles containing Val 331-->Cys permease, lactose transport is inactivated by either N-ethylmaleimide (NEM) or 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). Remarkably, beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG) enhances the rate of inactivation by CPM, a hydrophobic sulfhydryl reagent, whereas NEM inactivation is attenuated by the ligand. Val 331-->Cys permease was then purified and studied in dodecyl-beta,D-maltoside by site-directed fluorescence spectroscopy. The reactivity of Val 331-->Cys permease with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS) is not changed over a low range of TDG concentrations (< 0.8 mM), but the fluorescence of the MIANS-labeled protein is quenched in a saturable manner (apparent Kd approximately equal to 0.12 mM) without a change in emission maximum. In contrast, over a higher range of TDG concentrations (1-10 mM), the reactivity of Val 331-->Cys permease with MIANS is enhanced and the emission maximum of MIANS-labeled permease is blue shifted by 3-7 nm. Furthermore, the fluorescence of MIANS-labeled Val 331 -->Cys permease is quenched by both acrylamide and iodide, but the former is considerably more effective. A low concentration of TDG (0.2 mM) does not alter quenching by either compound, whereas a higher concentration of ligand (10 mM) decreases the quenching constant for iodide by about 50% and for acrylamide by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The protonation state of residues around the Q(o) binding site of the cytochrome bc(1) complex from Paracoccus denitrificans and their interaction with bound quinone(s) was studied by a combined electrochemical and FTIR difference spectroscopic approach. Site-directed mutations of two groups of conserved residues were investigated: (a) acidic side chains located close to the surface and thought to participate in a water chain leading up to the heme b(L) edge, and (b) residues located in the vicinity of this site. Interestingly, most of the mutants retain a high degree of catalytic activity. E295Q, E81Q and Y297F showed reduced stigmatellin affinity. On the basis of electrochemically induced FTIR difference spectra, we suggest that E295 and D278 are protonated in the oxidized form or that their mutation perturbs protonated residues. Mutations Y302, Y297, E81 and E295, directly perturb signals from the oxidized quinone and of the protein backbone. By monitoring the interaction with the inhibitor stigmatellin for the wild-type enzyme at various redox states, interactions of the bound stigmatellin with amino acid side chains such as protonated acidic residues and the backbone were observed, as well as difference signals arising from the redox active inhibitor itself and the replaced quinone. The infrared difference spectra of the above Q(o) site mutations in the presence of stigmatellin confirm the previously established role of E295 as a direct interaction partner in the enzyme from P.denitrificans as well. The protonated residue E295 is proposed to change the hydrogen-bonding environment upon stigmatellin binding in the oxidized form, and is deprotonated in the reduced form. Of the residues located close to the surface, D278 remains protonated and unperturbed in the oxidized form but its frequency shifts in the reduced form. The mechanistic implications of our observations are discussed, together with previous inhibitor binding data, and referred to the published X-ray structures.  相似文献   

18.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

19.
Grant GA 《Biochemistry》2011,50(14):2900-2906
In Escherichia colid-3-phosphoglycerate dehydrogenase, the amino acid sequences G294-G295 and G336-G337 are found between structural domains and appear to function as hinge regions. Mutagenesis studies of these sequences showed that bulky side chains had significant effects on the kinetic properties of the enzyme. Placement of a tryptophanyl residue near the serine binding site (W139F/E360W) allows serine binding to be monitored by fluorescence quenching analysis. Pre-steady-state analysis has demonstrated that serine binds to two forms of the free enzyme, E and E*. Conversion of Gly-336 to valine has its main effect on the Kd of serine binding to one form of the free enzyme (E) while maintaining the cooperativity of binding observed in the native enzyme. Conversion of Gly-294 to valine eliminates a rate limiting conformational change that follows serine binding to E. The conformational change between the two forms of free enzyme is maintained, but the Hill coefficient for cooperativity is significantly lowered. The data indicate that the cooperative transmission induced by serine binding is transmitted through the Gly294-Gly295 hinge region to the opposite serine binding interface and that this is most likely propagated by way of the substrate binding domain-regulatory domain interface. In the G294 mutant enzyme, both serine bound species, E·Ser and E*·Ser, are present in significant amounts indicating that cooperativity of serine binding does not result from the binding to two different forms. The data also suggest that the E* form may be inactive even when serine is not bound.  相似文献   

20.
The functional role of essential residue alpha-Arg-376 in the catalytic site of F1-ATPase was studied. The mutants alpha R376C, alpha R376Q, and alpha R376K were constructed, and combined with the mutation beta Y331W, to investigate catalytic site nucleotide-binding parameters, and to assess catalytic transition state formation by measurement of MgADP-fluoroaluminate binding. Each mutation caused large impairment of ATP synthesis and hydrolysis. Despite the apparent proximity of alpha-Arg-376 to bound nucleoside di- and triphosphate in published X-ray structures, the mutations had little effect on MgADP or MgATP binding affinities, particularly at the highest affinity catalytic site, site 1. Both Cys and Gln mutants abolished transition state formation, demonstrating that alpha-Arg-376 is normally involved at this step of catalysis. A model of the F1-ATPase catalytic transition state structure is presented and discussed. The Lys mutant, although severely impaired, supported transition state formation, suggesting that an additional essential role for the alpha-Arg-376 guanidinium group exists, likely in alpha/beta conformational signal transmission required for steady-state catalysis. Parallels between alpha-Arg-376 and GAP/G-protein "arginine finger" residues are evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号