首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
2.
Ethylene evolution from cucumber plants as related to sex expression   总被引:13,自引:3,他引:10       下载免费PDF全文
Ethylene evolved from monoecious and gynoecious cucumber (Cucumis sativus) plants grown under short and long day conditions was determined. More ethylene was evolved from floral buds and apices bearing buds than from whole seedlings of comparable weight. More ethylene also was evolved from apices of the gynoecious than from those of the monoecious type. Furthermore, quantities evolved from female buds were greater than from male ones and plants grown under short day conditions which promote femaleness evolved more ethylene than those grown under long day conditions. The data suggest that ethylene participates in the endogenous regulation of sex expression by promoting femaleness.  相似文献   

3.
This study aimed to investigate how low temperature alters the sex expression of monoecious cucumbers (Cucumis sativus L.). Plants were grown under different day/night temperature regimes, 28?°C/18?°C (12?h/12?h), 18?°C/12?°C, 28?°C/12?°C, and 28?°C/(6?h 18?°C+6?h 12?°C). It was found that plant femaleness is highest in the 28?°C/(6?h 18?°C+6?h 12?°C) treatment. Analysis of endogenous phytohormones and sugars in the shoot apex revealed that plant femaleness is positively correlated with the levels of ethylene, abscisic acid (ABA), glucose, and sucrose. Exogenous application experiments suggest that ABA and ethylene biosynthesis, as well as plant femaleness, was enhanced by glucose, sucrose, and mannose, but not by 3-O-methylglucose. Exogenous ABA had no significant effect on ethylene biosynthesis and plant femaleness. Both low temperature- and sugar-induced ABA biosynthesis, ethylene evolution, and plant femaleness can be antagonized by the hexokinase inhibitor glucosamine and the ABA biosynthesis inhibitor nordihydroguaiaretic acid. It is concluded that the enhancement of cucumber femaleness under various temperature regimes is induced by elevated levels of glucose and sucrose in the shoot apex through a sugar signalling pathway involving hexokinase.  相似文献   

4.
Ethylene plays a key role in sex determination of cucumber flowers. Gynoecious cucumber shoots produce more ethylene than monoecious shoots. Because monoecious cucumbers produce both male and female flower buds in the shoot apex and because the relative proportions of male and female flowers vary due to growing conditions, the question arises as to whether the regulation of ethylene biosynthesis in each flower bud determines the sex of the flower. Therefore, the expression of a 1-aminocyclopropane-1-carboxylic acid synthase gene, CS-ACS2, was examined in cucumber flower buds at different stages of development. The results revealed that CS-ACS2 mRNA began to accumulate just beneath the pistil primordia of flower buds at the bisexual stage, but was not detected prior to the formation of the pistil primordia. In buds determined to develop as female flowers, CS-ACS2 mRNA continued to accumulate in the central region of the developing ovary where ovules and placenta form. In gynoecious cucumber plants that produce only female flowers, accumulation of CS-ACS2 mRNA was detected in all flower buds at the bisexual stage and at later developmental stages. In monoecious cucumber, flower buds situated on some nodes accumulated CS-ACS2 mRNA, but others did not. The proportion of male and female flowers in monoecious cucumbers varied depending on the growth conditions, but was correlated with changes in accumulation of CS-ACS2 mRNA in flower buds. These results demonstrate that CS-ACS2-mediated biosynthesis of ethylene in individual flower buds is associated with the differentiation and development of female flowers.  相似文献   

5.
6.
7.
Members of the Cucurbitaceae family display a range of sexual phenotypes including various combinations of male, female, or bisexual flowers. Ethylene appears to be a key hormone regulating the sex determination process. Application of ethylene, or inhibition of ethylene action, increases or decreases the number of pistil-bearing buds, respectively. Elevated levels of ethylene production and expression of genes for ethylene biosynthesis, have been correlated with pistillate flower production. In this study, we sought to determine the effect of modified endogenous ethylene production on sex expression by constitutively expressing ACS (1-aminocyclopropane-1-carboxylate synthase), the first committed enzyme for ethylene biosynthesis, in transgenic melons (Cucumis melo L.). Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. ACS melon plants showed increased ethylene production by leaves and flower buds, and increased femaleness as measured by earlier and increased number of bisexual buds. ACS melons also had earlier and increased number of bisexual buds that matured to anthesis, suggesting that ethylene is important not only for sex determination, but also for development of the bisexual bud to maturity. Field studies showed that ACS melons had earlier mature bisexual flowers, earlier fruit set, and increased number of fruit set on closely spaced nodes on the main stem. These results provide a direct demonstration of the importance of endogenous ethylene production for female reproductive processes in melon.  相似文献   

8.
Floral sex allocation (weight of male flower buds over weight of female flower buds) was examined at the levels of current-year shoot, individual tree and population, and the tree individual level and population level floral sex ratio was explained as a consequence of the behavior of current-year shoots in the shoot-level monoecious (flowering current-year shoots have both male and female flowers) species, Siberian alder (Alnus hirsuta var. sibirica). The current-year shoot level floral sex allocation was not size-dependent and not different over years. However, in the year when the reproductive intensity was high, individual tree level floral sex allocation was size-dependent and the population level floral sex allocation was relatively female-biased. The female-biased floral sex allocation at the population level resulted from many gynoecious shoots (current-year shoots which have only female flowers). These results suggest that the floral sex allocation of Siberian alder was controlled not by changing the floral sex allocation of each current-year shoot, but by shifting the sex expression of current-year shoots from shoot-level monoecy to shoot-level gynomonoecy.  相似文献   

9.

Main conclusion

Floral primordia-targeted expression of the ethylene biosynthetic gene, ACS , in melon suggests that differential timing and ethylene response thresholds combine to promote carpels, inhibit stamens, and prevent asexual bud formation. Typical angiosperm flowers produce both male and female reproductive organs. However, numerous species have evolved unisexuality. Melons (Cucumis melo L.) can produce varying combinations of male, female or bisexual flowers. Regardless of final sex, floral development begins with sequential initiation of all four floral whorls; unisexuality results from carpel or stamen primordia arrest regulated by the G and A loci, respectively. Ethylene, which promotes femaleness, is a key factor regulating sex expression. We sought to further understand the location, timing, level, and relationship to sex gene expression required for ethylene to promote carpel development or inhibit stamen development. Andromonoecious melons (GGaa) were transformed with the ethylene biosynthetic enzyme gene, ACS (1-aminocyclopropane-1-carboxylate synthase), targeted for expression in stamen and petal, or carpel and nectary, primordia using Arabidopsis APETALA3 (AP3) or CRABSCLAW (CRC) promoters, respectively. CRC::ACS plants did not exhibit altered sex phenotype. AP3::ACS melons showed increased femaleness manifested by gain of a bisexual-only phase not seen in wild type, decreased male buds and flowers, and loss of the initial male-only phase. In extreme cases, plants became phenotypically hermaphrodite, rather than andromonoecious. A reduced portion of buds progressed beyond initial whorl formation. Both the ACS transgene and exogenous ethylene reduced the expression of the native carpel-suppressing gene, G, while elevating expression of the stamen-suppressing gene, A. These results show ethylene-mediated regulation of key sex expression genes and suggest a mechanism by which temporally regulated ethylene production and differential ethylene response thresholds can promote carpels, inhibit stamens, and prevent the formation of asexual buds.  相似文献   

10.
11.
Floral biology and sex determination are reviewed in cucumber, one of the best studied monoecious plant systems. Sexual differentiation is controlled by genotypic and environmental factors. Sex conversion has been achieved by a variety of chemical treatments, some of which being extensively used for commercial purposes. Sex expression can be shifted in either direction: femaleness is promoted by ethylene, auxines and ethylene releasing compounds, while maleness is induced by gibberellins and chemicals counteracting ethylene action. Agrobacterium transformation affects, albeit rather nonspecifically, sex expression. An important collection of sex and floral mutants has been developed. The expression of sex genes has been shown to be under the control of modifier genes or the environment. Cloning strategies can take profit of the fact that sex conversion can be modulated alone or in combination by genetical, chemical and/or environmental parameters.  相似文献   

12.
13.
Sex determination is the most widely studied subject in cucumber. The sex of cucumber plants can be monoecious, hermaphrodite, gynoecious, androecious, or andromonoecious. Besides environmental factors, three major genes, F/f, M/m, and A/a mainly govern the sex types in cucumber. Regardless of their sex all floral buds are bisexual at the early bud stage. A stage specific arrest of either stamen or carpel leads to unisexual flower development. The possible downstream product of the interaction of the sex determining genes that may directly allow the growth or selectively arrest stamen or pistil is not yet identified. Therefore, in the current study, we performed suppression subtractive hybridization using floral buds from nearly isogenic gynoecious and hermaphrodite cucumber plants and identified for the first time a cDNA homologous to nucleotide sugar epimerase. The expression level of the isolated putative nucleotide sugar epimerase is weak in female floral buds but strong in bisexual and male flowers. The weak level of the putative nucleotide sugar epimerase may be an indication for its improper functioning, which may influence stamen development in cucumber plants.  相似文献   

14.
Characterization of ethylene effects on sex determination in cucumber plants   总被引:16,自引:1,他引:15  
Sex differentiation in cucumber plants (Cucumis sativus L.) appears to be determined by the selective arrest of the stamen or pistil primordia. We investigated the influence of an ethylene-releasing agent (ethephon) or an inhibitor of ethylene biosynthesis (aminoethoxyvinyl glycine) on sex differentiation in different developmental stages of flower buds. These treatments influence sex determination only at the stamen primordia differentiation stage in both monoecious and gynoecious cucumbers. To clarify the relationships between the ethylene-producing tissues and the ethylene-perceiving tissues in inducing female flowers in the cucumber, we examined the localization of mRNA accumulation of both the ACC synthase gene (CS-ACS2) and the ethylene-receptor-related genes (CS-ETR1, CS-ETR2, and CS-ERS) in flower buds by in situ hybridization analysis. CS-ACS2 mRNA was detected in the pistil primordia of gynoecious cucumbers, whereas it was located in the tissues just below the pistil primordia and at the adaxial side of the petals in monoecious cucumbers. In flower buds of andromonoecious cucumbers, only CS-ETR1 mRNA was detected, and was located in the pistil primordia. The localization of the mRNAs of the three ethylene-receptor-related genes in the flower buds of monoecious and gynoecious cucumbers overlap but are not identical. We discuss the relationship between the mRNA accumulation patterns and sex expression in cucumber plants.  相似文献   

15.
It is well established that ethylene is the main hormonal regulator of sexual expression in the Cucurbitaceae family, controlling not only the sexual fate of individual floral buds, but also the female flower transition, that is, the time at which the first female flower appears and therefore the number of female flowers per plant. Although sex determination of individual flower buds is known to be controlled by specific ethylene biosynthesis ACS genes in melon and cucumber, the role of ethylene genes in the control of the transition to female flowering is still unknown. We have identified two contrasting monoecious inbred lines of Cucurbita pepo, Bolognese (Bog) and Vegetable spaghetti (Veg), which differ in female flower transition but not in flower development. In Bog, which is very sensitive to ethylene, the transition to female flowering is very early, whereas in Veg, which is much less sensitive to ethylene, the transition occurs much later. In this article we compare the production of ethylene and the expression profiles of seven genes involved in the biosynthesis, perception, and signalling of ethylene in the two contrasting lines. Bog, with earlier female flower transition, showed higher ethylene production and CpACO1 expression in the apex at an earlier stage of plant development, when Bog is already producing female flowers, but Veg has not transitioned to female flowering yet. Moreover, the expression of the ethylene receptor and CTR-like genes in the apex of Veg and Bog plants indicates that these genes negatively regulate female flower transition during the earlier stages of plant development. The earlier transition to female flowering in Bog is not only associated with a higher production of ethylene in the apex but also with a premature decline of ethylene negative regulators (receptors and CTR-like) in the apex of the plant. These results provide the basis for a model that explains the regulation of female flowering transition in monoecious cucurbits.  相似文献   

16.
AGL15 (AGAMOUS-like 15), a member of the MADS domain family of regulatory factors, accumulates preferentially throughout the early stages of the plant life cycle. In this study, we investigated the expression pattern and possible roles of postembryonic accumulation of AGL15. Using a combination of reporter genes, RNA gel blot analysis, and immunochemistry, we found that the AGL15 protein accumulates transiently in the shoot apex in young Arabidopsis and Brassica seedlings and that promoter activity is associated with the shoot apex and the base of leaf petioles throughout the vegetative phase. During the reproductive phase, AGL15 accumulates transiently in floral buds. When AGL15 was expressed in Arabidopsis under the control of a strong constitutive promoter, we noted a striking increase in the longevity of the sepals and petals as well as delays in a selected set of age-dependent developmental processes, including the transition to flowering and fruit maturation. Although ethylene has been implicated in many of these same processes, the effects of AGL15 could be clearly distinguished from the effects of the ethylene resistant1-1 mutation, which confers dominant insensitivity to ethylene. By comparing the petal breakstrength (the force needed to remove petals) for flowers of different ages, we determined that ectopic AGL15 had a novel effect: the breakstrength of petals initially declined, as occurs in the wild type, but was then maintained at an intermediate value over a prolonged period. Abscission-associated gene expression and structural changes were also altered in the presence of ectopic AGL15.  相似文献   

17.
18.
Abstract.  1. Field investigation of the association between sponge gourd, Luffa cylindrica plants and its ant visitors revealed that five of the six most frequent species: Camponotus compressus, C. paria, Pheidole sp., Pachycondyla tesserinoda and Tetramorium sp. mainly visited the extrafloral (EF) nectaries present on the leaves, bracts, bracteoles and calyx of the plant. Tapinoma melanocephalum was the only ant species observed at the floral as well as the EF nectaries.
2. A bioassay of ant behaviour revealed aversion to young and mature unisexual flowers of sponge gourd in the five predominantly EF nectary-visiting ant species, while floral preference was demonstrated in T. melanocephalum. A significant difference was not found in the number of insect pollinators visiting T. melanocephalum occupied and un-occupied flowers, suggesting the absence of deterrent effect of this tiny ant species on the pollinators.
3. Further behavioural assays showed preference for 2- and 4-day-old leaves and also 2-day-old buds, while the 4-day-old buds induced avoidance in all the species. Androecium and gynoecium had significantly higher repellent effects in comparison to the petals. Thus floral repellents, probably help to reduce nectar theft and prevent loss of pollen function.
4. This aversion was not demonstrated in the case of old flowers. A significantly greater number of insect pollinators visited young and mature flowers compared with old flowers, suggesting that selective exclusion of medium- and large-sized EF nectary-visiting ant species from the flowers, as a result of aversion to floral repellents, serves to avoid the threat of attack to insect pollinators of sponge gourd.  相似文献   

19.
In Viola odorata, chasmogamous (CH) or open flowers and small, short-petioled leaves are produced under 11 hr or less of daylight, cleistogamous (CL) or closed flowers and large, long-petioled leaves under 14 hr or more of daylight, and intermediate floral and leaf forms under transitional photoperiods. CL flowers are approximately four times smaller than CH flowers and differ morphologically in repressed growth of the anterior petal spur and staminal nectaries, and recurving of the style which remains enclosed within the cone formed by anther appendages. Both CH and CL shoot systems conform to a (2 + 3) phyllotaxis with minor differences in leaf divergence angles and phyllotactic indices. The larger CL leaf grows significantly faster than the CH leaf, and an increased rate of leaf initiation occurs in the CL apex represented by a plastochron of 3.4 days compared to 4.3 days in the CH apex. The plastochron index was used to indirectly age young floral primordia nondestructively until prophase of meiosis I within the anthers. This event occurs 8 days earlier in the CL than the CH flower. Time from meiosis until flower maturity, determined by direct observation, is about 14 days for the CL flower, versus 21 days for the CH flower.  相似文献   

20.
Sexual diversity expressed by Curcurbitaceae species is a primary example of developmental plasticity in plants. Ethylene, which promotes femaleness (carpel development), plays a key role in sex determination. We sought to determine the critical location for ethylene perception in developing floral primodia. The dominant negative Arabidopsis ethylene response mutant gene, etr1-1, was introduced into melon (Cucumis melo L.) plants under control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, or floral-targeted Apetela3 (AP3) and Crabs Claw (CRC) promoters, which in Arabidopsis, promote expression in petal and stamen, and carpel and nectary primordia, respectively. Based on effects of exogenous ethylene, it was predicted that inhibition of ethylene perception by carpel primordia would inhibit carpel development. Constitutive expression of etr1-1 caused several phenotypes associated with ethylene insensitivity, verifying that etr1-1 inhibits ethylene perception in the heterologous melon system. Carpel-bearing bud production was essentially abolished in 35S::etr1-1 melons, providing direct demonstration of the requirement for ethylene perception for carpel development. CRC::etr1-1 plants, however, showed enhanced femaleness as manifested by earlier and increased number of carpel-bearing buds, and production of female (rather than bisexual) buds. Despite increased carpel-bearing bud formation, a greater proportion of the CRC::etr1-1 carpel-bearing buds aborted before anthesis. AP3::etr1-1 plants showed increased maleness by nearly exclusive staminate flower production, and poorly developed carpels in the rare bisexual flowers. These results indicate that ethylene perception by the stamen (or petal) primordia plays a critical role in promoting carpel development at the time of sex determination, while ethylene perception by the carpel is important for maturation of carpel-bearing flowers to anthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号