首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have suggested that red blood cell proteolytic systems can degrade oxidatively damaged proteins, and that both damage and degradation are independent of lipid peroxidation (Davies, K. J. A., and Goldberg, A. L. (1987) J. Biol. Chem. 262, 8220-8226. These ideas have now been tested in cell-free extracts of rabbit erythrocytes and reticulocytes. Exposure to oxygen radicals or H2O2 increases the degradation of endogenous proteins in cell-free extracts, as in intact cells. Various radical-generating systems (acetaldehyde or xanthine + xanthine oxidase, ascorbic acid + iron, H2O2 + iron) and H2O2 alone enhanced the rates of proteolysis severalfold. Since these extracts were free of membrane lipids, protein damage and degradation must be independent of lipid peroxidation. An antioxidant buffer consisting of HEPES, glycerol, and dithiothreitol inhibited the increased proteolysis by 60-100%. Mannitol caused a 50-80% reduction in proteolysis suggesting that the hydroxyl radical (.OH), or a species with similar reactivity, may be the initiator of protein damage. When casein or bovine serum albumin were exposed to .OH (generated by H2O2 + Fe2+, or COCo radiation) these proteins were degraded up to 50 times faster than untreated proteins during subsequent incubations with red cell extracts. Mannitol inhibited this increase in proteolysis only if present during .OH exposure; mannitol did not affect the degradative system. Although ATP increased the degradation of untreated proteins 4- to 6-fold in reticulocyte extracts, it had little or no effect on the degradation of proteins exposed to .OH. ATP also did not stimulate hydrolysis of .OH-treated proteins in erythrocyte extracts. Leupeptin did not affect the degradative processes in either extract; thus lysosomal or Ca2+-activated thiol proteases were not involved. We propose that red cells contain a soluble, ATP-independent proteolytic pathway which may protect against the accumulation of proteins damaged by .OH or other active oxygen species.  相似文献   

2.
Degradation of oxidatively denatured proteins in Escherichia coli   总被引:7,自引:0,他引:7  
When exposed to oxidative stress, by oxygen radicals or H2O2, E. coli exhibited decreased growth, decreased protein synthesis, and dose-dependent increases in protein degradation. The quinone menadione induced proteolysis when cells were incubated in air, but was not effective when cells were incubated without oxygen. Anaerobically grown cells also exhibited significantly lower proteolytic capacity than did cells that were grown aerobically. Xanthine plus xanthine oxidase (which generate O2- and H2O2) caused a stimulation of proteolysis which was inhibitable by catalase, but not by superoxide dismutase: Indicating that H2O2 was responsible for the increased protein degradation. Indeed, H2O2 alone was effective in inducing increased intracellular proteolysis. Two-dimensional polyacrylamide gel electrophoresis of [3H]leucine labeled E. coli revealed greater than 50% decreases in the concentrations of 10-15 cell proteins following H2O2 or menadione exposure, while several other proteins were less severely affected. To test for the presence of soluble proteases, we prepared cell-free extracts of E. coli and incubated them with radio-labeled protein substrates. E. coli extracts degraded casein and globin polypeptides at rapid rates but showed little activity with native proteins such as superoxide dismutase, hemoglobin, bovine serum albumin, or catalase. When these same proteins were denatured by exposure to oxygen radicals or H2O2, however, they became excellent substrates for degradation in E. coli extracts. Studies with albumin revealed correlations greater than 0.95 between the degree of oxidative denaturation and proteolytic susceptibility. Pretreatment of E. coli with menadione or H2O2 did not increase the proteolytic capacity of cell extracts; indicating that neither protease activation, nor protease induction were required.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) and the reaction of XO-derived partially reduced oxygen species (PROS) have been suggested to be important in diverse mechanisms of tissue pathophysiology, including oxygen toxicity. Bovine aortic endothelial cells expressed variable amounts of XDH and XO activity in culture. Xanthine dehydrogenase plus xanthine oxidase specific activity increased in dividing cells, peaked after achieving confluency, and decreased in postconfluent cells. Exposure of BAEC to hyperoxia (95% O2; 5% CO2) for 0-48 h caused no change in cell protein or DNA when compared to normoxic controls. Cell XDH+XO activity decreased 98% after 48 h of 95% O2 exposure and decreased 68% after 48 h normoxia. During hyperoxia, the percentage of cell XDH+XO in the XO form increased to 100%, but was unchanged in air controls. Cell catalase activity was unaffected by hyperoxia and lactate dehydrogenase activity was minimally elevated. Hyperoxia resulted in enhanced cell detachment from monolayers, which increased 112% compared to controls. Release of DNA and preincorporated [8-14C]adenine was also used to assess hyperoxic cell injury and did not significantly change in exposed cells. Pretreatment of cells with allopurinol for 1 h inhibited XDH+XO activity 100%, which could be reversed after oxidation of cell lysates with potassium ferricyanide (K3Fe(CN)6). After 48 h of culture in air with allopurinol, cell XDH+XO activity was enhanced when assayed after reversal of inhibition with K3Fe(CN)6, and cell detachment was decreased. In contrast, allopurinol treatment of cells 1 h prior to and during 48 h of hyperoxic exposure did not reduce cell damage. After K3Fe(CN)6 oxidation, XDH+XO activity was undetectable in hyperoxic cell lysates. Thus, XO-derived PROS did not contribute to cell injury or inactivation of XDH+XO during hyperoxia. It is concluded that endogenous cell XO was not a significant source of reactive oxygen species during hyperoxia and contributes only minimally to net cell production of O2- and H2O2 during normoxia.  相似文献   

4.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

5.
The damaging effects of ascorbate (AH-) and superoxide (O-2) on resealed erythrocyte ghosts containing predetermined levels of lipid hydroperoxides (LOOHs) have been studied. Continuous blue light irradiation of membranes in the presence of protoporphyrin resulted in steadily increasing LOOH levels and enhanced release of a trapped marker, glucose 6-phosphate (G6P), after a 3- to 4-h lag. Neither superoxide dismutase (SOD) nor catalase inhibited these effects, ruling out O-2 and H2O2 as reactive intermediates. A 1-h light dose produced partially photoperoxidized ghosts, which, in the dark at 37 degrees C, released G6P no faster than unirradiated controls (approximately 7%/h). When xanthine oxidase plus xanthine (XO/X) was introduced as a source of O-2 and H2O2, the irradiated membranes lysed rapidly (t1/2 approximately 2 h). EDTA or SOD inhibited the reaction, whereas catalase had little or no effect. Unirradiated ghosts were not lysed by XO/X unless the system was supplemented with Fe(III), in which case total protection was afforded by SOD or catalase. In all experiments there was an excellent correlation between postirradiation lipid peroxidation (thiobarbituric acid reactivity) and G6P release. Similar observations were made with AH-. For example, dark incubation of photooxidized ghosts in the presence of 0.5 mM AH- resulted in rapid lysis (t1/2 approximately 1 h), which was stimulated approximately twofold by 50 microM Fe(III) and was inhibited by EDTA. By comparison, unirradiated ghosts showed no net peroxidation or lysis after 3 h exposure to Fe(III)/AH-. Neither SOD nor catalase protected against AH--stimulated damage. AH--promoted lipid peroxidation was inhibited by butylated hydroxytoluene, a lipophilic antioxidant, but was unaffected by 2,5-dimethylfuran or ethanol, singlet oxygen, and hydroxyl radical traps, respectively. These results suggest that a mechanism exists by which photogenerated LOOHs undergo redox metal-mediated reduction to alkoxy radicals (LO.), which trigger a burst of membrane-disrupting lipid peroxidation.  相似文献   

6.
7.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

8.
Xanthine oxidase and purines have recently been detected in the circulation during acute viral infection and following hepatotoxicity and shock. Reactions of xanthine oxidase-generated oxidants with human plasma or bovine serum albumin (BSA) and egg phosphatidylcholine (PC) liposomes have been studied by measuring protein sulfhydryl oxidation and two markers of free radical-mediated lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and conjugated dienes. Plasma incubated with 5 mU/ml xanthine oxidase (XO) and 0.5 mM hypoxanthine (Hx) for 2 h at 37 degrees C had 25-53% oxidation of sulfhydryl groups, with greater than 80% of the oxidation occurring during the first 20 min of the reaction. Concentrations of BSA similar to those present in serum, when exposed to XO/Hx-mediated oxidative stress, showed an even greater decrease in sulfhydryl concentration than that of plasma. No significant increase in plasma TBARS and conjugated dienes was observed during the 2-h incubation period in the presence of XO. Egg PC liposomes, suspended to a plasma phospholipid-equivalent concentration, showed a minor increase in TBARS and conjugated dienes under similar XO/Hx incubation conditions. In the presence of 0.23 mM BSA, lipid peroxidation was completely inhibited. A similar inhibition of lipid peroxidation was induced by cysteine but not by uric acid. Electrophoretic and arsenite-mediated sulfur reduction analysis revealed that BSA was oxidized beyond the disulfide form, with sulfenic acid formed during the initial period of oxidation. Protein sulfhydryls served as sacrificial antioxidants, preventing plasma lipid peroxidation, as well as being targets for oxidative damage. Plasma protein thiol oxidation was determined to be a more sensitive and specific indication of oxidant stress to the vascular compartment than assessment of lipid oxidation byproducts.  相似文献   

9.
The protective effects of catechin 7-O-β-D glucopyranoside (C7G) against streptozotocin (STZ)-induced mitochondrial damage in rat pancreatic β-cells (RINm5F) were investigated. A marked increase in mitochondrial reactive oxygen species (ROS) was observed in STZ-treated cells; this increase was restricted by C7G treatment. C7G also scavenged superoxide anions and hydroxyl radicals generated by xanthine/xanthine oxidase (xanthine/XO) and the Fenton reaction (FeSO(4) + H(2) O(2)), respectively. C7G restored activity and expression of both mitochondrial manganese superoxide dismutase (MnSOD) and catalase (CAT), which were suppressed by STZ treatment. In addition, C7G prevented STZ-induced mitochondrial lipid peroxidation, protein carbonyl, and DNA base modification. C7G restored the loss of mitochondrial membrane potential (Δψ) that was disrupted by STZ treatment, and prevented cell death via inhibition of apoptosis. These results suggest that C7G has a protective effect against STZ-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction.  相似文献   

10.
Oxygen radicals have been implicated as important mediators of myocardial ischemic and reperfusion injury. A major product of oxygen radical formation is the highly reactive hydroxyl radical via a biological Fenton reaction. The sarcoplasmic reticulum is one of the major target organelles injured by this process. Using a oxygen radical generating system consisting of dihydroxyfumarate and Fe3+-ADP, we studied lipid peroxidation and Ca2+-ATPase of cardiac sarcoplasmic reticulum. Incubation of sarcoplasmic reticulum with dihydroxyfumarate plus Fe3+-ADP significantly inhibited enzyme activity. Addition of superoxide dismutase, superoxide dismutase plus catalase (15 micrograms/ml) or iron chelator, deferoxamine (1.25-1000 microM) protected Ca2+-ATPase activity. Time course studies showed that this system inhibited enzyme activity in 7.5 to 10 min. Similar exposure of sarcoplasmic reticulum to dihydroxyfumarate plus Fe3+-ADP stimulated malondialdehyde formation. This effect was inhibited by superoxide dismutase, catalase, singlet oxygen, and hydroxyl radical scavengers. EPR spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide verified production of the hydroxyl radical. The combination of dihydroxyfumarate and Fe3+-ADP resulted in a spectrum of hydroxyl radical spin trap adduct, which was abolished by ethanol, catalase, mannitol, and superoxide dismutase. The results demonstrate the role of oxygen radicals in causing inactivation of Ca2+-ATPase and inhibition of lipid peroxidation of the sarcoplasmic reticulum which could possibly be one of the important mechanisms of oxygen radical-mediated myocardial injury.  相似文献   

11.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

12.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   

13.
A differentiation-arrested primary cell culture model was used to examine the role of reactive oxygen species in the control of prostacyclin (PGI2) production in the perinatal rat lung. Coincubation of the lung cells with arachidonic acid (AA) and xanthine (X, 0.25 mM) plus xanthine oxidase (XO, 10 mU/ml) or with AA and glucose (25 mM) plus glucose oxidase (25 mU/ml) augmented the AA-induced PGI2 output. Superoxide dismutase (10 U/ml) did not alter the X + XO effect, whereas catalase (10 U/ml) eliminated both X + XO and glucose plus glucose oxidase effects. H2O2 (1-200 microM) showed a dose-related biphasic augmentation with peak stimulation at 20 microM. Catalase again blocked this effect, but dimethylthiourea, a hydroxyl radical scavenger, did not. A 20-min pretreatment of the cells with X + XO, glucose plus glucose oxidase, or H2O2, however, diminished the capacity of the cells to convert exogenous AA to PGI2. This pretreatment effect was also blocked by catalase. The responses were similar in lung cells obtained from day 20 rat fetuses (term = 22 days) and 1-day-old newborn rats. Lactate dehydrogenase release was not detected during treatment periods but increased significantly after exposure to reactive oxygen species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Renal injury is considered as one of the prerequisites for calcium oxalate retention. In order to determine the role of lipid peroxidation related effects for hyperoxaluria, we evaluated the alterations in lipid peroxidation, antioxidants and oxalate synthesizing enzymes in lithogenic rats with response to vitamin E + selenium treatment. In kidney of lithogenic rats, the level of lipid peroxidation and the activities of oxalate synthesizing enzymes were found to be increased whereas the levels/activities of non-enzymatic and enzymatic antioxidants were found to be decreased. The urinary excretion of both oxalate and calcium were significantly elevated. Supplementation of lithogenic rats with vitamin E + selenium decreased the levels of lipid peroxides and the activities of oxalate synthesizing enzymes like glycolic acid oxidase (GAO), lactate dehydrogenase (LDH), xanthine oxidase (XO) with a concomitant increase in the activities of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) and increased levels of non-enzymatic antioxidants like ascorbic acid, alpha-tocopherol and reduced glutathione (GSH). The urinary excretion of oxalate and calcium were normalized. The antioxidants vitamin E + selenium thereby protected from hyperoxaluria.  相似文献   

15.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

16.
Hepatic lipid peroxidation has been implicated in the pathogenesis of alcohol-induced liver injury, but the mechanism(s) by which ethanol metabolism or resultant free radicals initiate lipid peroxidation is not fully defined. The role of the molybdenum-containing enzymes aldehyde oxidase and xanthine oxidase in the generation of such free radicals was investigated by measuring alkane production (lipoperoxidation products) in isolated rat hepatocytes during ethanol metabolism. Inhibition of aldehyde oxidase and xanthine oxidase (by feeding tungstate at 100 mg/day per kg) decreased alkane production (80-95%), whereas allopurinol (20 mg/kg by mouth), a marked inhibitor of xanthine oxidase, inhibited alkane production by only 35-50%. Addition of acetaldehyde (0-100 microM) (in the presence of 50 microM-4-methylpyrazole) increased alkane production in a dose-dependent manner (Km of aldehyde oxidase for acetaldehyde 1 mM); menadione, an inhibitor of aldehyde oxidase, virtually inhibited alkane production. Desferrioxamine (5-10 microM) completely abolished alkane production induced by both ethanol and acetaldehyde, indicating the importance of catalytic iron. Thus free radicals generated during the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism in the initiation of alcohol-induced liver injury.  相似文献   

17.
Incubation of human or sheep platelet crude membranes with xanthine oxidase/hypoxanthine in the presence of Fe2+/ADP inactivated phosphotyrosine phosphatase (PTPase, protein-tyrosine-phosphate-phosphohydrolase, EC 3.1.3.48) activity in a time-dependent manner, this inhibition being significant within 5 min of treatment. The dynamics of protein thiols differed depending on the platelet species, but in any case decreases in protein thiols were only visible 20-45 min after the start of the treatment. The inhibition of PTPase activity in general showed good a correlation with the production of thiobarbituric acid-reactive substances (TBARS). The results with several antioxidants suggest that the inhibition of PTPase activity is related to the generation of alkoxyl and/or peroxyl radicals. Furthermore, the formation of fluorescent products and changes in amino groups were observed only after long incubation times with the oxidizing agents, these fluorescent products and the residual enzyme activity remaining in the membrane fraction. Treatment of platelet membranes with trans-2-nonenal and n-heptaldehyde, but not with acetaldehyde, also inhibited membrane-associated PTPase activity. However, the amount of protein thiols was reduced only by treatment with trans-2-nonenal. Fluorescence product formation was always higher with trans-2-nonenal, these products being mainly located in the protein fraction. The results with aldehydes suggest that secondary degraded products of lipid hydroperoxides affect PTPase activity. Kinetic studies of PTPase activity indicated that with all treatments enzyme inhibition is mainly due to a decrease in the Vmax value. The results of fluorescence anisotropy measurements of labeled platelet membranes did not support the notion of a contribution of the lipid organization to peroxidation-mediated PTPase inhibition. All the above results indicate that platelet membrane-associated PTPase inhibition due to treatment with xanthine oxidase/ hypoxanthine in the presence of Fe2+/ADP is a very complex, time-dependent process, and that it is probably related, at least after long periods of peroxidation, to changes in protein thiols and amino groups. We predict that the sensitivity of PTPase to lipid peroxidation must be physiologically relevant because of the increasing importance of tyrosine phosphorylation in signal transduction, in general, and in platelet activation and aggregation in particular.  相似文献   

18.
Eu3+-tetracycline complex (EuT) increased the chemiluminescence (CL) intensity of linolenic acid micells (UFA-somes) oxidized with lipoxygenase and CL of the lecithin liposomes peroxidized with Fe2+ ions by 3 orders of magnitude. In the systems producing oxygen radicals (xanthine + xanthine oxidase and Fenton's reagent) EuT was ineffective. Luminol increased CL intensity up to 4 orders of magnitude in Fenton's reagent and by 2 orders of magnitude in xanthine oxidase reaction. The sensitization of CL in Fe2+-induced lipid peroxidation (LPO) of liposomes was by a factor 40, while in lipoxygenase reaction very low sensitization was observed. By means of cut-off light filter OS-12 (Soviet) having short wave-length transmittance limit at 560 nm it was possible to measure separately in the same sample the luminol-sensitized CL (maximal emission near 480 nm) and EuT-sensitized CL (maximum at 620 nm); these two CL components reflect, correspondingly, the production rate of oxygen- and lipid-free radicals. Mannitol, the OH radical scavenger, inhibited luminol-dependent component of CL in peroxidized liposomes and did not inhibited EuT sensitized CL in the same system. Apparently, hydroxyl radicals are produced in LPO reactions and responsible for the effect of CL sensitization by luminol, but are not involved in the chain LPO process.  相似文献   

19.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

20.
The contribution of lipid peroxidation to myocardial injury by free radicals (FR) is still unclear. Consequently, we examined the functional damages inflicted on cultured rat cardiomyocytes (CM) during FR stress provoked by the xanthine/xanthine oxidase system (X/XO) or by a hydroperoxidized fatty acid ((9 Z, 11 E, 13 (S), 15 Z)-13-hydroperoxyocta-decatrienoic acid; 13-HpOTrE), in order to simulate in vitro the initial phase and the propagation phase of the FR attack, respectively. Transmembrane potentials were recorded with glass microelectrodes and contractions were monitored photometrically. The EPR spectroscopy showed that X/XO produced superoxide and hydroxyl radicals during 10 min. The X/XO system altered sharply and irreversibly the spontaneous electrical and mechanical activities of the CM. However, the gas chromatographic analysis showed that these drastic functional damages were associated with comparatively moderate membrane PUFA degradation. Moreover, the EPR analysis did not reveal the production of lipid-derived FR. 13-HpOTrE induced a moderate and reversible decrease in electrical parameters, with no change in CM contractions. These results indicate that the functional consequences of FR attack are dependent on the radical species present and do not support the idea that the membrane lipid breakdown is a major factor of myocardial oxidant dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号