首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Fourier transform infrared (FTIR) spectroscopy has been used to examine the conformationally sensitive amide I' bands of calmodulin and troponin C. These are observed to undergo a sequence of spectroscopic changes which reflect conformational rearrangements that take place when Ca2+ is bound. Calmodulin and troponin C show similar though not identical changes on Ca2+ binding, and the effect of Mg2+ on troponin C is quite different from that of Ca2+. Both proteins show absorption maxima in the amide I' region at 1644 cm-1 which is significantly lower in frequency than has been generally observed for proteins that contain a high percentage of alpha-helix. It is proposed that an unusually high proportion of the helices in the structures of these proteins are distorted from the normal alpha-helical configuration such that the carbonyl stretching frequencies are lowered. It is further proposed that the shift to lower frequency is due to backbone carbonyl groups in the distorted helices that form strong hydrogen bonds with solvent molecules. A decrease in intensity at 1654 cm-1, the normal frequency assignment for alpha-helical structure, is observed as Ca2+ binds to calmodulin and troponin C. This suggests that Ca2+ binding results in a net decrease in "normal" alpha-helix conformation. There is a corresponding increase in intensity of the band at 1644 cm-1, possibly due to an increase in distorted helix content, allowing for a net increase in helix consistent with circular dichroism estimates of the Ca2+-dependent changes in helix content in calmodulin.  相似文献   

2.
Among the known regulatory proteins that are conformationally sensitive to the binding of calcium ions, calmodulin and troponin-C have the greatest primary sequence homology. This observation has led to the conclusion that the most accurate predicted molecular model of calmodulin would be based on the X-ray crystallographic coordinates of the highly refined structure of turkey skeletal troponin-C. This paper describes the structure of calmodulin built from such a premise. The resulting molecular model was subjected to conjugate gradient energy minimization to remove unacceptable intramolecular non-bonded contacts. In the analysis of the resulting structure, many features of calmodulin, including the detailed conformation of the Ca2+-binding loops, the amino- and carboxy-terminal hydrophobic patches of the Ca2+-bound form, and the several clusters of acidic residues can be reconciled with much of the previously published solution data. Calmodulin is missing the N-terminal helix characteristic of troponin-C. The deletion of three residues from the central helical linker (denoted D/E in troponin-C) shortens the molecule and changes the orientation of the two domains of calmodulin by 60 degrees relative to those in troponin-C. The molecular model has been used to derive two possible binding sites for the antipsychotic drug trifluoperazine, a potent competitive inhibitor of calmodulin activity.  相似文献   

3.
N C Strynadka  M N James 《Proteins》1990,7(3):234-248
Crystals of troponin C are stabilized by an intermolecular interaction that involves the packing of helix A from the N-terminal domain of one molecule onto the exposed hydrophobic cleft of the C-terminal domain of a symmetry related molecule. Analysis of this molecular recognition interaction in troponin C suggests a possible mode for the binding of amphiphilic helical molecules to troponin C and to calmodulin. From the template provided by this troponin C packing, it has been possible to build a model of the contact region of mastoporan as it might be bound to the two Ca2+ binding proteins. A possible binding mode of melittin to calmodulin is also proposed. Although some of the characteristics of binding are similar for the two amphiphilic peptides, the increased length of melittin requires a significant bend in the calmodulin central helix similar to that suggested recently for the myosin light chain kinase calmodulin binding peptide (Persechini and Kretsinger: Journal of Cardiovascular Pharmacology 12:501-512, 1988). Not only are the hydrophobic interactions important in this model, but there are several favorable electrostatic interactions that are predicted as a result of the molecular modeling. The regions of troponin-C and calmodulin to which amphiphilic helices bind are similar to the regions to which the neuroleptic drugs such as trifluoperazine have been predicted to bind (Strynadka and James: Proteins 3:1-17, 1988).  相似文献   

4.
The amino acid sequence of a new Ca2+-binding protein (CaVP) from Amphioxus muscle (Cox, J. A., J. Biol. Chem. 261, 13173-13178) has been determined. The protein contains 161 amino acid residues and has a molecular weight of 18,267. The N terminus is blocked by an acetyl group. The two functional Ca2+-binding sites have been localized based on homology with known Ca2+-binding domains, on internal homology and on secondary structure prediction, and appear to be the domains III and IV. The C-terminal half of CaVP, which contains the two Ca2+-binding sites, shows a remarkable similarity with human brain calmodulin (45%) and with rabbit skeletal troponin C (40%). Functional domain III contains 2 epsilon-N-trimethyllysine residues in the alpha-helices flanking the Ca2+-binding loop. Sequence determination revealed two abortive Ca2+-binding domains in the N-terminal half of CaVP with a similarity of 24 and 30% as compared with calmodulin and troponin C, respectively. This half is also characterized by the presence of a disulfide bridge linking the N-terminal helix of domain I to the C-terminal helix of domain II. This disulfide bond is very resistant to reduction in the native state, but not in denatured CaVP. The optically interesting aromatic chromophores (2 tryptophan and 1 tyrosine residues) are all located in the nonfunctional domain II.  相似文献   

5.
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.  相似文献   

6.
Thermodynamic study of domain organization in troponin C and calmodulin   总被引:8,自引:0,他引:8  
Intramolecular melting of troponin C, calmodulin and their proteolytic fragments has been studied microcalorimetrically at various concentrations of monovalent and divalent ions. It is shown by thermodynamic analysis of the experimentally determined excess heat capacity function that the four calcium-binding domains in these two related proteins are not integrated into a single co-operative system, as would be the case if they formed a common hydrophobic core in the molecule, but still interact with each other in a very specific way. There is a positive interaction between domains I and II, which is so strong that they actually form a single co-operative block. The interaction between domains III and IV is positive also, although much less pronounced, while the interaction between the pairs of domains (I and II) and (III and IV) is negative, as if they repel each other. The structure of the co-operative block of domains I and II at room temperature does not depend noticeably on the ionic conditions, which influence its stability to a small extent only. The same applies to domain IV of calmodulin, but in troponin C this domain is unstable in the absence of divalent ions, in solutions of low ionic strength. In both proteins, the least stable is domain III, which forms a compact ordered structure at room temperature only in the presence of Ca2+. In troponin C, calcium ions can be replaced by magnesium ions, although the compact structure of domain III formed by these two ions does not seem to be quite identical. Thus, at conditions close to physiological, with regard to temperature and ionic strength, the removal of free Ca2+ from the solution induces in both proteins a reversible transition of domain III to the non-compact disordered state. This dramatic Ca2+-induced change in the domain III conformation in troponin C and calmodulin might play a key role in the functioning of these proteins as a Ca2+-controlled switch in the molecular mechanisms of living systems.  相似文献   

7.
Five deletion mutants of the D/E linker region of the troponin C central helix were tested for conformational and functional differences from wild-type troponin C. The mutants were in the region 87KEDAKGKSEEE97: dEDA, dKG, dKGK, dKEDAKGK, and dSEEE, designed to change the length of the central helix and the orientation of the Ca(2+)-binding domains relative to each other [Dobrowolski, Z., Xu, G.-Q., & Hitchcock-DeGregori, S.E. (1991) J. Biol. Chem. 266, 5703-5710]. Previous work showed that all mutants except dSEEE are partially defective in one part of the Ca2+ switch or the other. All mutants undergo Ca(2+)-dependent conformational changes as detected by changes in electrophoretic mobility, alpha-helix content, and hydrophobic exposure. Deletions of the central helix do not extensively alter the thermal stability of troponin C, as determined by temperature-dependent loss of alpha-helix. There are differences among the mutants that do not correlate with function. All troponin C mutants show Ca(2+)-dependent interaction with troponin I and T in polyacrylamide gels. Troponin I-troponin C interaction was also analyzed by Ca(2+)-dependent increase in the monomer/excimer ratio of tropinin I and relief of inhibition of the actomyosin S1 ATPase. While all mutants retain basic function, dKGK, dKEDAKGK, and dEDA have altered interaction with troponin I in the absence of Ca2+. dSEEE differs in conformation from wild type, but it is normal in functional assays. This conserved region of the D/E linker is not required for interaction with troponin I in the presence or absence of urea.  相似文献   

8.
Protein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established. In this work, NMR was used to identify conformational and dynamic changes in cardiac troponin C upon binding a phosphomimetic troponin I, having Ser(43)/Ser(45) mutated to Asp. Chemical shift perturbation mapping indicated that residues in helix G were most affected. Smaller chemical shift changes were observed in residues located in the Ca(2+)/Mg(2+)-binding loops. Amide hydrogen/deuterium exchange rates in the C-lobe of troponin C were compared in complexes containing either the wild-type or phosphomimetic N-domain of troponin I. In the presence of a phosphomimetic domain, exchange rates in helix G increased, whereas a decrease in exchange rates for residues mapping to Ca(2+)/Mg(2+)-binding loops III and IV was observed. Increased exchange rates are consistent with destabilization of the Thr(129)-Asp(132) helix capping box previously characterized in helix G. The perturbation of helix G and metal binding loops III and IV suggests that phosphorylation alters metal ion affinity and inter-subunit interactions. Our studies support a novel mechanism for protein kinase C signal transduction, emphasizing the importance of C-lobe Ca(2+)/Mg(2+)-dependent troponin interactions.  相似文献   

9.
Mutations have been made in the exposed region of the avian troponin C central helix, the D/E linker, which change its length and the orientation of the Ca2(+)-binding domains relative to each other. The region 87Glu-Asp-Ala-Lys-Gly-Lys-Ser-Glu-Glu-Glu97 has been altered in five deletion (d) mutants: dEDA, dKG, dKGK, dSEEE, and dKEDAKGK. The recombinant troponin Cs were expressed in Escherichia coli, purified, and assayed for function. All mutants retained basic troponin C function. They all bound Ca2+ to the low and high affinity sites, and they all were able to confer Ca2+ sensitivity on the regulated actomyosin ATPase. However, the regulatory function of all mutants except dSEEE was defective in one part of the Ca2+ switch or the other. In certain conditions dKGK and dKEDAKGK failed to inhibit fully whereas dEDA and dKG failed to activate the regulated actomyosin ATPase fully. The following general conclusions have been made. (a) The length of the D/E linker per se (assuming the linker is helical) and the orientation of the two Ca2(+)-binding domains relative to each other are not crucial for regulation. (b) The conserved charge cluster 95Glu-Glu-Glu97, in a region of troponin C known to bind to troponin I and postulated to be required for regulation, appears to be unimportant for function. (c) Deletion of 88Glu-Asp-Ala90 resulted in a troponin C that could not activate the actomyosin (or S1) ATPase over the level of actomyosin alone, thus defining a role for troponin C in this aspect of thin filament regulation. The results have been interpreted in terms of the crystallographic structure of troponin C and related to results with analogous calmodulin mutants.  相似文献   

10.
The three-dimensional structure of a sarcoplasmic Ca2(+)-binding protein from the sandworm Nereis diversicolor has been determined at 3.0 A resolution using multiple isomorphous replacement techniques. The NH2-terminal half of the molecule contains one variant Ca2(+)-binding domain with a novel helix-loop-helix conformation and one Ca2(+)-binding domain that is no longer functional because of amino acid changes. The overall conformation of this pair of domains is different from any previously described Ca2(+)-binding protein. The COOH-terminal half of the protein contains two Ca2(+)-binding domains with the usual helix-loop-helix configuration and is similar to calmodulin and troponin C. Unlike calmodulin or troponin C, there is no exposed alpha-helix connecting the two halves of the molecule, so the overall structure is much more compact.  相似文献   

11.
Structure and dynamics of calmodulin in solution.   总被引:5,自引:3,他引:2       下载免费PDF全文
To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides.  相似文献   

12.
Calmodulin structure refined at 1.7 A resolution.   总被引:3,自引:0,他引:3  
We have determined and refined the crystal structure of a recombinant calmodulin at 1.7 A resolution. The structure was determined by molecular replacement, using the 2.2 A published native bovine brain structure as the starting model. The final crystallographic R-factor, using 14,469 reflections in the 10.0 to 1.7 A range with structure factors exceeding 0.5 sigma, is 0.216. Bond lengths and bond angle distances have root-mean-square deviations from ideal values of 0.009 A and 0.032 A, respectively. The final model consists of 1279 non-hydrogen atoms, including four calcium ions, 1130 protein atoms, including three Asp118 side-chain atoms in double conformation, 139 water molecules and one ethanol molecule. The electron densities for residues 1 to 4 and 148 of calmodulin are poorly defined, and not included in our model, except for main-chain atoms of residue 4. The calmodulin structure from our crystals is very similar to the earlier 2.2 A structure described by Babu and coworkers with a root-mean-square deviation of 0.36 A. Calmodulin remains a dumb-bell-shaped molecule, with similar lobes and connected by a central alpha-helix. Each lobe contains three alpha-helices and two Ca2+ binding EF hand loops, with a short antiparallel beta-sheet between adjacent EF hand loops and one non-EF hand loop. There are some differences in the structure of the central helix. The crystal packing is extensively studied, and facile crystal growth along the z-axis of the triclinic crystals is explained. Herein, we describe hydrogen bonding in the various secondary structure elements and hydration of calmodulin.  相似文献   

13.
Calmodulin has been a subject of intense scrutiny since its discovery because of its unusual properties in regulating the functions of about 100 diverse target enzymes and structural proteins. The original and to date only crystal conformation of native eukaryotic Ca(2+)-calmodulin (Ca(2+)-CaM) is a very extended molecule with two widely separated globular domains linked by an exposed long helix. Here we report the 1.7 A X-ray structure of a new native Ca(2+)-CaM that is in a compact ellipsoidal conformation and shows a sharp bend in the linker helix and a more contracted N-terminal domain. This conformation may offer advantages for recognition of kinase-type calmodulin targets or small organic molecule drugs.  相似文献   

14.
Small-angle X-ray scattering data have been measured for rabbit skeletal muscle troponin C and its complexes with the venom peptides melittin and mastoparan as well as synthetic peptides based on regions of the troponin I sequence implicated in troponin C binding. At the neutral pH used in this study (pH 6.8), troponin C shows a tendency to form dimers in the presence of 4 mol equiv of Ca2+, but is monomeric in solution when 2 or less mol equiv of Ca2+ is present. The 4Ca2+.troponin C dimers dissociate upon binding melittin, mastoparan, and peptides based on residues 96-115, 1-30, and 1-40 in the troponin I sequence. This result suggests that the peptide-binding sites overlap with the regions of contact between troponin C molecules forming a dimer. Like the structurally homologous calcium-binding protein calmodulin, troponin C shows conformational flexibility upon binding different peptides. Upon binding melittin, troponin C contracts in a similar manner to calmodulin when it binds peptides known to form amphiphilic helices (e.g., melittin, mastoparan, or MLCK-I). In contrast, mastoparan binding to troponin C does not result in a contracted structure. The scattering data indicate troponin C also remains in an extended structure upon binding the inhibitory peptides having the same sequence as residues 96-115 in troponin I.  相似文献   

15.
Crystal structure of calmodulin   总被引:9,自引:0,他引:9  
The crystal structure of calmodulin has been determined to 3.6 A resolution. At this resolution the polypeptide chain can be traced. Some of the side chains have tentatively been identified. Refinement of the structure with x-ray diffraction data measured to 1.65 A resolution is continuing. As reported by Babu et al. calmodulin is about 65 A long and 30 A in diameter. Homolog domains 1 and 2 are related by a local twofold axis, as in parvalbumin and in troponin C, and form one end of the molecule. Domains 3 and 4 form the other end. The second alpha-helix of domain 2 and a short interdomain region are continuous with the first helix of domain 3, thereby forming a single helix from residues 67-93. The central region, residues 75-84, of this long helix forms a handle connecting the two pairs of homolog domains. Exclusive of the residues, 75-84, in the handle the closet approach of side chains of pair 1, 2 to pair 3, 4 is 12 A. The spatial relationship of pair 1, 2 to pair 3, 4 is similar in calmodulin to the relationship of the corresponding pairs in troponin C. However, in troponin C there are three additional residues in the handle region of the long alpha-helix and the two pairs are about 5.0 A further apart. On the surface of pair 1, 2 in calmodulin there is one extended region with many hydrophobic side chains from both domain 1 and domain 2. This hydrophobic patch is bounded by two distinct clusters of anionic side chains, one from the beginning of the first helix of domain 1 and on the other side of the hydrophobic surface one from the beginning of the first helix of domain 2. Homologously, the hydrophobic patch on the surface of pair 3, 4 is bounded by two clusters of aspartate and glutamate residues. Either or both of these hydrophobic surfaces may be sites to which calmodulin target proteins bind.  相似文献   

16.
Studies of ligand binding to arrestin   总被引:1,自引:0,他引:1  
A striking homology is observed between the regions 70-83 and 361-374 of the sequence of bovine arrestin and the calcium-binding loops of calmodulin and troponin C. However, the predicted alpha-helices flanking the calcium-binding site in calmodulin and troponin C are not present in arrestin. Direct measurements therefore were made in order to assess whether arrestin can bind calcium. We found that arrestin does not bind Ca2+ at physiological ionic strength, as determined by equilibrium dialysis, gel filtration, and fluorescence spectroscopy. Rapid and quantitative precipitation of arrestin occurs with Tb3+. The precipitation is reversed by EDTA and blocked by Mg2+ but not by Ca2+. Prompted by several reports, we also investigated whether nucleotides bind to arrestin. Neither ATP nor GTP binds under the conditions tested. Binding of arrestin to photolyzed, phosphorylated rhodopsin also does not influence the binding of calcium or nucleotides.  相似文献   

17.
J Mackall  C B Klee 《Biochemistry》1991,30(29):7242-7247
The rate of proteolysis of trypsin-sensitive bonds was used to examine the nature of the structural changes accompanying Ca2+ and Mg2+ binding to calmodulin. In the Ca(2+)-free form, the rates of proteolysis at Arg-106 and Arg-37 are rapid (greater than 300 and 28 nmol min-1 mL-1, respectively), the bonds at Arg-74, Lys-75, and Lys-77, in the central helix, are cleaved more slowly (10 nmol min-1 mL-1), and a lag in the cleavage at the remaining bonds (Lys-13, Lys-30, Arg-86, Arg-90, and Arg-126) suggests that they are not cleaved in the native protein. High concentrations of Ca2+, but not Mg2+, almost completely abolish proteolysis at Arg-106 and drastically reduce the rate of cleavage at Arg-37. Both Ca2+ and Mg2+ exert a moderate protective effect on the proteolysis of the central helix. These results suggest that the F-helix of domains III and, to a lesser extent, the F-helix of domain I are somewhat flexible in the Ca(2+)-free form and are stabilized by Ca2+. Whereas full occupancy of the four Ca(2+)-binding sites produces little change in the susceptibility of the central helix to proteolytic attack, binding of two Ca2+ produces a 10-fold enhancement of the rate of proteolysis in this part of the molecule. We propose that at intermediate Ca2+ levels the flexibility of the central helix of calmodulin is greatly increased, resulting in the transient formation of intermediates which have not been detected by spectroscopic techniques but are trapped by the irreversible action of trypsin.  相似文献   

18.
Solution x-ray scattering using synchrotron radiation as an x-ray source was used to analyze the Ca2+-dependent shape change of pig brain calmodulin in detail. The radius of gyration of calmodulin at 10 mg/ml was increased by 0.9 A. The increase was nearly completed when 2.5 mol of Ca2+/mol of calmodulin was added, whereas the radius of gyration of calmodulin with mastoparan decreased by about 3 A with an increasing Ca2+ concentration up to 4 mol of Ca2+/mol of calmodulin. At a moderate angle of region, both scattering profiles from calmodulin with or without Ca2+ displayed clear humps at s = 0.03 A-1 which are characteristic of a dumbbell structure. However, in the presence of mastoparan, the hump in the scattering profile became obscure and later disappeared with the third and fourth Ca2+ binding to calmodulin. These findings are attributable to the Ca2+-induced shape change of calmodulin with mastoparan from a dumbbell structure to a non-dumbbell structure in which the distance between the two lobes of calmodulin become closer by a bend in the central helix.  相似文献   

19.
Calcium vector protein (CaVP), a new protein isolated from Amphioxus muscle, binds in a Ca2(+)-regulated manner to a 27 kd target protein, named CaVPT, whose function has not been elucidated yet. CaVP bears significant sequence homology to both calmodulin and skeletal muscle troponin C, especially in the C-terminal half of the molecule, which presumably contains the two functional Ca2(+)-binding sites. The N-terminal half contains two abortive EF-hands and is intramolecularly crosslinked with a disulfide bond. Using the crystallographic structures of calmodulin and striated muscle troponin C as a framework, we constructed two different three-dimensional models of CaVP and modeled the intramolecular disulfide bridge. The modeling based upon the coordinates of calmodulin yields a Ca2(+)-filled sites configuration in the N-terminal half of the molecule, even though no Ca2+ is bound in this half, whereas the troponin C-derived model generates a Ca2(+)-empty sites configuration. The models predict that neither is the Ca2(+)-filled nor in the Ca2(+)-empty sites conformation is there any steric and/or energetic obstacle for the formation of the disulfide bridge and that the disulfide bond is poorly accessible to reducing reagents. The optical properties of the Trp and Tyr residues of CaVP indicate that the calmodulin-derived model represents the most plausible prediction.  相似文献   

20.
The crystal structure of troponin C from turkey skeletal muscle has been refined at 2.0 A resolution (1 A = 0.1 nm). The resulting crystallographic R factor (R = sigma[[Fo[-[Fc[[/sigma[Fo[, where [Fo[ and [Fc[ are the observed and calculated structure factor amplitudes) is 0.155 for the 8054 reflections with intensities I greater than or equal to 2 sigma(I) within the 10 A to 2.0 A resolution range. With 66% of the residues in helical conformation, troponin C provides a good sample for helix analysis. The mean alpha-helix dihedral angles (phi, psi = -62 degrees, -42 degrees) agree with values observed for helical regions in other proteins. The helices are all curved and/or kinked. In particular, the 31 amino acid long inter-domain helix is smoothly curved, with a rather large radius of curvature of 137 A. Helix packing is different in the Ca2+-free domain (N-terminal) and the Ca2+-bound domain (C-terminal). The inter-helix angles for the two helix-loop-helix motifs in the regulatory domain are 133 degrees and 151 degrees, whereas the value for the two motifs in the C-terminal domain is 110 degrees, as observed in the EF-hands of parvalbumin. These differences affect the packing of the respective hydrophobic cores of each domain, in particular the disposition of aromatic rings. Pairwise arrangement of Ca2+-binding loops is common to both states, but the conformation is markedly different. Conversion of one to the other can be achieved by small cumulative changes of main-chain dihedral angles. The integrity of loop structure is maintained by numerous electrostatic interactions. Both salt bridges and carboxyl-carboxylate interactions are observed in TnC. There are more intramolecular (9) than intermolecular (1) salt bridges. Carboxyl-carboxylate interactions occur because the pH of the crystals is 5.0 and there is a multitude of aspartate and glutamate residues. One is intramolecular and four are intermolecular. Polar side-chain interactions occur more commonly with main-chain carbonyls and amides than with other polar side-chains. These interactions are mostly short range, and are similar to those observed in other proteins with one exception: negatively charged side-chains interact more frequently with main-chain carbonyl oxygen atoms. However, out of 19 such interactions, 10 involve oxygen atoms of the Ca2+ ligands. These unfavorable interactions are compensated by the favorable interactions with the Ca2+ ions and with main-chain amides. They are a trivial consequence of the tight fold of the Ca2+-binding loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号