首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
All living organisms communicate with the external environment for their survival and existence. In prokaryotes, communication is achieved by two-component systems (TCS) comprising histidine kinases and response regulators. In eukaryotes, signalling is accomplished by serine/threonine and tyrosine kinases. Although TCS and serine/threonine kinases coexist in prokaryotes, direct cross-talk between these families was first described in Group B Streptococcus (GBS). A serine/threonine kinase (Stk1) and a TCS (CovR/CovS) co-regulate toxin expression in GBS. Typically, promoter binding of regulators like CovR is controlled by phosphorylation of the conserved active site aspartate (D53). In this study, we show that Stk1 phosphorylates CovR at threonine 65. The functional consequence of threonine phosphorylation of CovR in GBS was evaluated using phosphomimetic and silencing substitutions. GBS encoding the phosphomimetic T65E allele are deficient for CovR regulation unlike strains encoding the non-phosphorylated T65A allele. Further, compared with wild-type or T65A CovR, the T65E CovR is unable to bind promoter DNA and is decreased for phosphorylation at D53, similar to Stk1-phosphorylated CovR. Collectively, we provide evidence for a novel mechanism of response regulator control that enables GBS (and possibly other prokaryotes) to fine-tune gene expression for environmental adaptation.  相似文献   

5.
6.
7.
8.
9.
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain- and serotype-specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two-component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease-encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild-type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain- and serotype-specific variability in RocA function.  相似文献   

10.
The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host. The production of many of these virulence factors is directly controlled by the activity of the CovR/S two-component regulatory system. CovS acts in one direction as a kinase primarily to activate the response regulator CovR and repress the expression of major virulence factors and in the other direction as a phosphatase to permit gene expression in response to environmental changes that mimic conditions found during human infection. This Janus-like behaviour of the CovR/S system is recapitulated in the binding of CovR to the promoters that it directly regulates. Interactions between different faces of the CovR DNA binding domain appear to depend upon DNA sequence, leading to the potential for differential regulation of virulence gene expression.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.  相似文献   

19.
20.

Background  

The Streptococcus pyogenes (group A streptococci, GAS) two-component signal transduction system CovRS has been described to be important for pathogenesis of this exclusively human bacterial species. If this system acts uniquely in all serotypes is currently unclear. Presence of serotype- or strain-dependent regulatory circuits and polarity is an emerging scheme in Streptococcus pyogenes pathogenesis. Thus, the contribution of the sensor kinase (CovS) of the global regulatory two-component signal transduction system CovRS on pathogenesis of several M serotypes was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号