首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.  相似文献   

2.
In order to determine the sites of synthesis of the proteins of the mammalian mitochondrial ribosome (mitoribosome), bovine (MDBK) cells were labeled with [35S]methionine in the presence of inhibitors of mitochondrial and cytoplasmic protein synthesis. Labeling in the absence of cytoplasmic protein synthesis produced a "blank" fluorogram, indicating that there is no mitochondrial product. Additionally, incorporation of [35S]methionine into the enumerated mitoribosomal proteins continued in the absence of mitochondrial protein synthesis. Finally, it was demonstrated that mitoribosomal proteins can be both translated and assembled into complete mitoribosomes in the absence of mitochondrial protein synthesis. These results indicate that in mammals, as opposed to lower eukaryotes, all of the mitoribosomal proteins are products of cytoplasmic protein synthesis.  相似文献   

3.
Ribosomal protein L12 is the only component present in four copies in the ribosome. In prokaryotes as well as in yeast and human mitochondria, all copies correspond to the same RPL12. By contrast, we present here evidence that plant mitochondria contain four different RPL12 proteins. Compared to E. coli RPL12, the four mature RPL12 variants show a conserved C-terminal region that contains all the functional domains of prokaryotic RPL12 but three of them present an additional N-terminal extension containing either an acidic or a basic domain and a high level of proline residues. All proteins have a potential mitochondrial N-terminal targeting sequence and were imported in vitro into isolated mitochondria. Using RPL12 antibodies, the four variants were shown to be present in a potato mitochondrial ribosome fraction. Moreover, the four proteins reacted differently to the destabilization of ribosomes. This suggests either a heterogeneous RPL12 composition among each ribosome and/or a heterogeneous population of plant mitochondrial ribosomes.  相似文献   

4.
The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization and characterization have not been reported. Here, we show that the putative mitochondrial recycling factor, mtRRF, is indeed a mitochondrial protein. Expression of human mtRRF in fission yeast devoid of endogenous mitochondrial recycling factor suppresses the respiratory phenotype. Further, human mtRRF is able to associate with Escherichia coli ribosomes in vitro and can associate with mitoribosomes in vivo. Depletion of mtRRF in human cell lines is lethal, initially causing profound mitochondrial dysmorphism, aggregation of mitoribosomes, elevated mitochondrial superoxide production and eventual loss of OXPHOS complexes. Finally, mtRRF was shown to co-immunoprecipitate a large number of mitoribosomal proteins attached to other mitochondrial proteins, including putative members of the mitochondrial nucleoid.  相似文献   

5.
Modification of the 50-S subunits of Escherichia coli ribosomes with the arginine reagent phenylglyoxal produces inactivation of peptidyl transferase and inhibition of the binding of C(U)-A-C-C-A-LeuAc, phenylalanyl-tRNA and N-acetylphenylalanyl-tRNA to the ribosome. Hybridization experiments, using 1.25 M LiCl core particles and the corresponding split proteins from untreated and phenylglyoxal-treated 50-S subunits, indicate that inactivation and inhibition of binding are the effects of modification of a protein fraction, the functionality of the RNA moiety being unaffected by the reagent. The split proteins from phenylglyoxal-modified 50-S subunits are incorporated to 1.25 M LiCl core particles as well as those obtained from unmodified subunits, thus excluding the failure to bind as the cause of inactivation. In agreement with the general role played by the arginyl residues as positive binding sites for anionic ligands, the present results indicate that the arginyl residues of a protein fraction from 50-S subunits might be important in the binding of aminoacyl-tRNA and peptidyl-tRNA to ribosomes.  相似文献   

6.
The translation system of mammalian mitochondria   总被引:2,自引:0,他引:2  
Oligoribonucleotides and mRNA were used to define properties of the bovine mitoribosomal mRNA binding site. The RNA binding domain on the 28 S subunit spans approx. 80 nucleotides of the template, based on ribosome protection experiments, but the major interaction with the ribosome occurs over a 30 nucleotide stretch. The binding site for E. coli IF3 is conserved in bovine mitoribosomes, but mitochondrial factors appear essential for proper interaction of mRNA with mitoribosomes. The small subunit of bovine mitoribosomes contains a high-affinity binding site for guanyl nucleotides, further indication of specialized mechanisms for initiation complex formation and function of mammalian mitochondrial ribosomes.  相似文献   

7.
The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.  相似文献   

8.
R Lill  E Crooke  B Guthrie  W Wickner 《Cell》1988,54(7):1013-1018
Trigger factor is a soluble, 63,000 dalton protein of E. coli that stabilizes proOmpA, the precursor form of a major outer-membrane protein, in a conformation competent for in vitro membrane assembly. There is approximately one trigger factor molecule bound to each 70S ribosome isolated from cell extracts in physiological buffers. Trigger factor dissociates from ribosomes in 1.5 M LiCl and reassociates with salt-washed ribosomes in low-salt buffer. Binding is exclusively to the 50S (large) subunit, known to contain the exit domain for nascent polypeptide chains. In addition to its associations with proOmpA and ribosomes, excess trigger factor can compete with the proOmpA-trigger factor complex for a limited number of membrane sites that are essential for translocation of proOmpA. These data suggest a model of trigger factor cycling between the cytoplasm, the ribosome, presecretory proteins, and membrane receptor proteins.  相似文献   

9.
The yeast Saccharomyces cerevisiae mitochondrial release factor was expressed from the cloned MRF1 gene, purified from inclusion bodies, and refolded to give functional activity. The gene encoded a factor with release activity that recognized cognate stop codons in a termination assay with mitochondrial ribosomes and in an assay with Escherichia coli ribosomes. The noncognate stop codon, UGA, encoding tryptophan in mitochondria, was recognized weakly in the heterologous assay. The mitochondrial release factor 1 protein bound to bacterial ribosomes and formed a cross-link with the stop codon within a mRNA bound in a termination complex. The affinity was strongly dependent on the identity of stop signal. Two alleles of MRF1 that contained point mutations in a release factor 1 specific region of the primary structure and that in vivo compensated for mutations in the decoding site rRNA of mitochondrial ribosomes were cloned, and the expressed proteins were purified and refolded. The variant proteins showed impaired binding to the ribosome compared with mitochondrial release factor 1. This structural region in release factors is likely to be involved in codon-dependent specific ribosomal interactions.  相似文献   

10.
A ribosomal protein of the L25 family specifically binding to 5S rRNA is an evolutionary feature of bacteria. Structural studies showed that within the ribosome this protein contacts not only 5S rRNA, but also the C-terminal region of protein L16. Earlier we demonstrated that ribosomes from the ΔL25 strain of Escherichia coli have reduced functional activity. In the present work, it is established that the reason for this is a fraction of functionally inactive 50S ribosomal subunits. These subunits have a deficit of protein L16 and associate very weakly with 30S subunits. To study the role of the contact of these two proteins in the formation of the active ribosome, we created a number of E. coli strains containing protein L16 with changes in its C-terminal region. We found that some mutations (K133L or K127L/K133L) in this protein lead to a noticeable slowing of cell growth and decrease in the activity of their translational apparatus. As in the case of the ribosomes from the ΔL25 strain, the fraction of 50S subunits, which are deficient in protein L16, is present in the ribosomes of the mutant strains. All these data indicate that the contact with protein L25 is important for the retention of protein L16 within the E. coli ribosome in vivo. In the light of these findings, the role of the protein of the L25 family in maintaining the active state of the bacterial ribosome is discussed.  相似文献   

11.
  • 1.1. Proteins were isolated from subunits of mitochondrial and cytoplasmic ribosomes of Locusta migratoria and were analyzed by means of two-dimensional gel electrophoreses using three different electrophoresis systems.
  • 2.2. Using the system of Czempiel et al. (1976) proteins from whole locust mitochondrial ribosomes (combined subunits) were separated into 72 spots; proteins from the large and small subunits resulted in 48 and 29 spots respectively.
  • 3.3. The mol. wt distribution of mitochondrial ribosome proteins was estimated by using the electrophoresis system of O'Farrell (1975). These mol. wts are in the range of 11,000–56,000, the average mol. wt is about 29,500. Assuming one copy of protein per ribosome this gives a total mol. wt for the protein part of mitochondrial ribosomes of ca. 2.1 x 106.
  • 4.4. Parallel separation of cytoplasmic and mitochondrial ribosome proteins was achieved using the system of Geyl et al. (1981). Cytoplasmic ribosome proteins produced 65 spots and revealed a more alkaline character than mitochondrial ribosome proteins.
  相似文献   

12.
We have isolated clones representing at least three nuclear genes for mitochondrial ribosomal proteins from Neurospora crassa by screening a lambda gt11 cDNA library with an antiserum against a mixture of these proteins. The cDNA and genomic DNA sequence for one of these genes, mrp-3, was determined. The MRP3 protein was purified by immune-affinity chromatography, using a monoclonal antibody probe, and subjected to amino acid sequence analysis to identify the mature amino terminus and a prospective mitochondrial-targeting presequence. MRP3 was identified as the largest, least basic protein detected from the small subunit of ribosomes which had been salt-washed and fractionated on sucrose gradients. However, the mRNA and protein products of mrp-3 were found to be present in excess over those of other N. crassa mitoribosomal protein genes. Using a solution hybridization/S1 nuclease assay, we found three-fold- more mRNA for mrp-3 than for another mito-ribosomal protein gene. In addition, a 30- to 50-fold excess of non-ribosomal MRP3 protein was discovered. The additional protein was localized in mitochondrial membrane fractions; none was detected in matrix fractions after removal of the ribosomes. An immunologically related protein was detected in ribosome and membrane fractions of mitochondria from Saccharomyces cerevisiae. The functional significance of this dual localization remains an enigma.  相似文献   

13.
Antibodies prepared against proteins from 50S ribosomes of Escherichia coli also reacted with the supernatant proteins of a cell-free extract of E. coli which was ribosome-free. A reaction of immunological identity (Ouchterlony tests) was demonstrated for one of these supernatant proteins and one protein found in 50S ribosomes. Isotope experiments involving a shift from (14)C-leucine medium to (12)C-leucine medium showed that these proteins are not formed by breakdown of ribosomes during the preparation of cell-free extracts, but instead represent a pool of ribosome protein which is utilized during growth. In shift experiments from (14)C-leucine to (12)C-leucine medium, the kinetics of disappearance of labeled supernatant ribosome proteins (as measured by reaction with antibody) indicated that half the pool is depleted in 0.1 generation time at 37 C in glucose-salts medium. The pool was also depleted under conditions of amino acid starvation of a "relaxed" strain which accumulated "relaxed" particles. Most, if not all, of the protein present in "relaxed" particles was derived from the pool. The pool represented about 3 to 4% of the total soluble proteins in the ribosome-free supernatant fluid of an E. coli extract.  相似文献   

14.
In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30.  相似文献   

15.
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.  相似文献   

16.
Protein composition of mitochondrial ribosomes of the yeast Saccharomyces cerevisiae was analysed by two-dimensional electrophoresis. The small (37S) mitoribosomal subunit contains 36 different polypeptides with molecular weights ranging from 10,000 to 60,000. The large (50S) subunit is composed of 41 proteins with molecular weights from 10,000 to 43,000. The molecular weights of mitoribosomal small and large subunits are 1.85 MDa and 2.35 MDa, respectively. Proteins represent 60-62% and 42-45% of the total mass of 37S and 50S subunits respectively. On the basis of the protein content and molecular weights of individual proteins we conclude that all mitoribosomal proteins are present in the mitoribosome in equimolar proportions.  相似文献   

17.
Concanavalin A (ConA) seleclively enhanced the incorporation of [3H]leucine into a range of proteins of thymocytes incubated in vitro. At the same time ConA seemed to selectively enhance the synthesis of proteins that occurred on membrane-bound ribosomes (extracted from the mitochondrial fraclion with 1% Triton X-100 buffer). The protein synthetic ‘commitment’ of ribosomes was assessed from the stability of ribosomes in 500 mM KC1 before and after puromycin treatment. This indirect method was necessary because of some polysome degradation in the case of membrane-bound ribosomes. Membrane-bound ribosomes were found to be more than 3 times as ‘committed’ as were free ribosomes and ConA increased their commitment by 37–54%. These observations indicate the potential importance of membrane-bound ribosomes in the regulation of thymocyte protein synthesis, particularly during ‘antigenic’ activation, even though this ribosome fraction constituted less than 20% of the total ribosome population.  相似文献   

18.
Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.  相似文献   

19.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

20.
Mechanism of mRNA binding to bovine mitochondrial ribosomes   总被引:3,自引:0,他引:3  
The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号