共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have used the synthetic microtubule inhibitor Tubulozole C in order to study the role of the microtubule system in human lymphocyte activation. Microtubule disruption prior to activation with phytohemagglutinin (PHA) resulted in a drastic reduction of IL-2 production. Similarly, using OKT3 or PHA as stimulators, a substantial decrease in proliferation was observed. Although IL-2 receptor analysis performed on the stimulated and antitubular-treated lymphocytes showed a 2-fold decrease in high-affinity and a 100-fold decrease in low-affinity IL-2 receptor expression, a proliferative response to externally added rIL-2 was noticed. This occurred provided the triggering agent was excluded or added in suboptimal concentrations. These results indicate that intact microtubules are necessary for PHA/OKT3-induced proliferation and IL-2 production, but not for IL-2-induced proliferation. 相似文献
4.
H Wolff T Novak A Shaw U Dianzani C A Janeway 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(9):2996-3002
Cloned CD4 T cells of the Th2 type make IL-4 and related cytokines upon receptor cross-linking, whereas cloned CD4 T cells of the Th1 type make IL-2, IFN-gamma, and TNF-beta. These two types of CD4 T cell are also reported to use distinct mechanisms of signal transduction. It has been reported that Th1 cells flux Ca2+ upon receptor cross-linking, whereas Th2 cells do not. We have noted that when cloned Th2 cells are exposed to high levels (20 U/ml) of IL-2, they show an altered phenotype. Such cells are much more sensitive to activation by certain antireceptor antibodies, they flux calcium upon receptor ligation without additional cross-linking with anti-Ig antibodies, and they make much larger amounts of IL-4. In addition, the organization of their TCR is altered, with increased levels of the TCR-eta chain and an increase in the extent of association of CD4 with CD3 and CD45, changes similar to those found in Th1 cells. These results suggest that there is no fundamental difference in the signal transduction apparatus of Th1 and Th2 cells; rather, the IL-2 made by Th1 cells may create similar phenotypic changes in these cells and thus create the impression of altered signal transduction mechanisms. These results do show that exposure to high levels of IL-2 can profoundly affect signal transduction in T cells. Furthermore, we found that the Ca2+ signal caused by CD3 antibodies seemed to differ in character from that caused by TCR antibodies suggesting that the use of CD3 antibodies is not always a good model for activation through the TCR. 相似文献
5.
Steel factor-induced tyrosine phosphorylation in murine mast cells. Common elements with IL-3-induced signal transduction pathways. 总被引:5,自引:0,他引:5
The c-kit/W gene encodes a transmembrane protein tyrosine kinase, which is the receptor for Steel factor (SLF). SLF shares many general characteristics of hemopoietic growth factors, stimulating the survival, proliferation, and differentiation of stem and progenitor cells. We have investigated the tyrosine phosphorylation events that ensue after SLF binding to the c-kit protein using primary cultures of murine mast cells as a model system and have compared the effects of SLF and IL-3. Proteins that became phosphorylated on tyrosine after treatment of cells with SLF included c-kit itself, and major protein substrates designated p130, p122, p118, p115, p112, p100, p77, p55, p44, and p42. The majority of these proteins were cytosolic and maximally phosphorylated within 2 min of growth factor treatment. Combinations of immunoprecipitation and immunoblotting with antibodies specific for proteins known to be associated with signaling pathways demonstrated that none of the major tyrosine-phosphorylated species correlated with phospholipase C-gamma 1, GTPase activating protein, or phosphatidylinositol 3' kinase. However, stimulation with SLF led to a modest increase in tyrosine phosphorylation of the 85-kDa subunit of the phosphatidylinositol 3' kinase and increased association with a 150-kDa phosphotyrosyl protein, likely to be c-kit. Two species that did correlate with known elements were the 44- and 42-kDa polypeptides, shown to be members of the mitogen-activated protein kinase family. A subset of these proteins (p130, p115/112, p100, p55, p44, p42) were also tyrosine-phosphorylated when cells were stimulated by IL-3. MonoQ ion-exchange chromatography and two dimensional gel analyses were used to demonstrate that at least the p55, p44, and p42 substrates were identical, as well as some more minor species of molecular weights 50, 38, and 36 kDa, thus indicating common pathways of signaling in hemopoietic cells. Whereas in the case of SLF the dose-response characteristics of the proliferative response and the induction of tyrosine phosphorylation were similar, in the case of IL-3, much lower concentrations were required for maximal proliferation than maximal tyrosine phosphorylation. These studies form the basis for further molecular characterization of common components of signal transduction pathways in hemopoietic cells. 相似文献
6.
Canellada A Alvarez I Berod L Gentile T 《The Journal of steroid biochemistry and molecular biology》2008,111(3-5):255-261
Regulation of the immune response is necessary to allow successful pregnancy. Asymmetric IgG antibodies are involved in fetal maintenance. We have previously demonstrated that estrogen (E2) and progesterone (P4) modulate the synthesis of asymmetric antibodies but the underlying mechanisms remain unclear. Since IL-6 and a progesterone-induced blocking factor (PIBF) were shown to regulate asymmetric antibody synthesis, in this work we analyzed whether E2 and P4 were able to modulate IL-6 signal transduction pathways and the ability of P4 to induce PIBF synthesis, in hybridoma B cells was also evaluated. We found that the IL-6 treatment induced an increase in the expression of gp130 and JAK1 by the hybridoma. E2 and P4 diminished the IL-6-induced gp130 expression in a dose-dependent manner, whereas the expression of JAK1 was not significantly affected. At 10(-6)M concentration, the steroids inhibited the phosphorylation of gp130 and diminished the IL-6-induced STAT3 phosphorylation and traslocation to the nucleus. Maximal PIBF expression was observed when the hybridoma was cultured with 10(-10)M P4, compared to the control (p<0.05). Results demonstrate two molecular mechanisms, the modulation of the IL-6R signal transduction pathway and PIBF induction, which could be involved in the immunoregulatory role of sexual steroids during pregnancy. 相似文献
7.
Goebel J Forrest K Wills-Karp M Roszman TL 《Journal of receptor and signal transduction research》2006,26(1-2):87-106
Few data exist on the modulation of cytokine receptor signaling by the actin or tubulin cytoskeleton. Therefore, we studied interleukin-2 receptor (IL-2R) signaling in phytohemagglutinine (PHA)-pretreated human T cells in the context of alterations in the cytoskeletal system induced by cytochalasin D (CyD), jasplaklinolide (Jas), taxol (Tax), or colchicine (Col). We found that changes in cytoskeletal tubulin polymerization altered the strength of several IL-2-triggered signals. Moreover, Tax-induced tubulin hyperpolymerization augmented the surface expression of the IL-2R ss -chain and enhanced the association of the IL-2R beta -chain with cytoskeletal tubulin. The IL-2R beta-chain, in turn, was constitutively associated with tubulin and, more weakly, actin. To exclude the possibility that these associations are artifacts caused by PHA, we confirmed them in T cells from TCR-transgenic DO 11.10 mice stimulated with their nominal antigen. We conclude that altered polymerization of cytoskeletal components, especially tubulin, is accompanied by modulation of IL-2 signaling at the receptor level. 相似文献
8.
IL-4 activates a distinct signal transduction cascade from IL-3 in factor-dependent myeloid cells. 总被引:13,自引:0,他引:13 下载免费PDF全文
L M Wang A D Keegan W E Paul M A Heidaran J S Gutkind J H Pierce 《The EMBO journal》1992,11(13):4899-4908
Interleukin-4 (IL-4) was shown to induce a potent mitogenic response in the IL-3-dependent myeloid progenitor cell line, FDCP-2. Although IL-4 could not sustain long-term growth of FDCP-2 cells, it enhanced their growth in serum-free medium containing IL-3. IL-4 triggered prominent tyrosine phosphorylation of a substrate(s) migrating at 170 kDa and less striking phosphorylation of several other proteins, including the IL-4 receptor. By contrast, IL-3 induced distinct tyrosine phosphorylation of proteins migrating at 145, 97, 70, 55 and 52 kDa in the same cell line. IL-4 treatment of FDCP-2 cells caused a dramatically strong association of phosphatidylinositol 3-kinase (PI 3-kinase) both with the 170 kDa tyrosine phosphorylated substrate and with the IL-4 receptor itself. By contrast, IL-3 triggered only weak association of PI 3-kinase activity with the 97 kDa substrate. While IL-4 did not affect cellular raf, IL-3 stimulation did induce a shift in its mobility presumably due to serine/threonine phosphorylation. Taken together, our results indicate that IL-4 and IL-3 activate distinct phosphorylation cascades in the same cell background; this may reflect a difference in the biological function of these two cytokines. 相似文献
9.
10.
Conservation of a receptor/signal transduction system 总被引:3,自引:0,他引:3
11.
Upregulation of immunoglobulin D-specific receptors (IgD-R) on CD4+ T cells may facilitate their interaction with specific carbohydrate moieties uniquely associated with membrane IgD on B cells. Previous studies have shown that upregulation of IgD-R facilitates cognate T-B cell interactions by mediating bidirectional signaling resulting in increased antibody responses and clonal expansion of antigen-specific T cells. Murine T hybridoma cells, 7C5, constitutively express IgD-R, as has been confirmed by staining with biotinylated IgD. Earlier studies have shown that inhibitors of protein tyrosine kinase (PTK) completely prevented upregulation of IgD-R in response to oligomeric IgD, suggesting that cross-linking of IgD-R may induce signal transduction and functional consequences through one or more PTK activation pathways, leading to upregulation of IgD-R. In the present study we show that cross-linking of IgD-R by oligomeric IgD indeed results in (a) T cell activation as seen by tyrosine phosphorylation of several intracellular proteins, (b) tyrosine phosphorylation of p56 Lck and PLC-gamma in 7C5 T hybridoma cells, and (c) phosphorylation of an approximately 29-kDa band that exhibits strong affinity for IgD. We analyzed tyrosine phosphorylation of p56 Lck and PLC-gamma in BALB/c splenic T cells that were exposed to oligomeric IgD both in vivo and in vitro. In vitro cross-linking as well as in vivo followed by in vitro cross-linking of IgD-R resulted in enhanced phosphorylation of p56 Lck and moderate tyrosine phosphorylation of PLC-gamma. These results suggest that interactions between IgD-R and IgD mediate signal transduction and support our previous findings that IgD-R+ T cells enhance cognate T cell-B cell interactions and antibody production. 相似文献
12.
Bulanova E Budagian V Orinska Z Krause H Paus R Bulfone-Paus S 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(10):5045-5055
13.
E Mu?oz U Beutner A Zubiaga B T Huber 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(3):964-969
We have investigated the signal transduction pathways mediated by IL-1 in the Th 2 cell line D10.A, and we have made the following findings. Interaction of IL-1 with its receptor leads to the translocation of protein kinase C (PKC) from the cytosol to the membrane, phosphorylation of the 80-kDa protein that is substrate for PKC, as well as an increase in the level of cAMP. In addition, IL-1 induced IL-5 mRNA expression in these cells. We have established that the IL-5 gene is activated in D10.A cells in response to either phorbol esters or 8-Br cAMP, and that the two agents act as cofactors. IL-1 is able to synergize with phorbol esters and is additive with 8-Br cAMP for IL-5 mRNA expression. There are two possibilities to explain these results: 1) D10.A cells express two types of functional IL-1R, each linked to an independent signal transduction pathway; or 2) these cells have only one kind of IL-1R which, upon ligand interaction, mediates the activation of both the PKC and the adenylate cyclase pathway. 相似文献
14.
Sugo T Tachimoto H Chikatsu T Murakami Y Kikukawa Y Sato S Kikuchi K Nagi T Harada M Ogi K Ebisawa M Mori M 《Biochemical and biophysical research communications》2006,341(4):1078-1087
Lysophosphatidyl-L-serine (lysoPS) is thought to be an immunological regulator because it dramatically augments the degranulation of rat peritoneal mast cells (RPMCs). This stimulatory effect may be mediated by a lysoPS receptor, but its molecule has not been identified yet. During a ligand fishing study for the orphan G-protein-coupled receptor 34 (GPR34), we found that lysoPS caused a dose-dependent inhibition of forskolin-stimulated cAMP accumulation in human GPR34-expressing Chinese hamster ovary (CHO/hGPR34) cells. The CHO/hGPR34 cells were unresponsive to other structurally related phospholipids examined. Quantitative real-time-PCR demonstrated that mRNAs of GPR34 are particularly abundant in mast cells. The effective lysoPS concentration for RPMC degranulation was similar to that required for GPR34 activation, and the structural requirement of lysoPS for RPMC degranulation was in good agreement with that observed in CHO/hGPR34 cells. These results suggest that GPR34 is the functional mast cell lysoPS receptor. 相似文献
15.
S. cerevisiae alpha pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. 总被引:11,自引:0,他引:11
Wild-type S. cerevisiae cells of both mating types prefer partners producing high levels of pheromone and mate very infrequently to cells producing no pheromone. However, some mutants that are supersensitive to pheromone lack this ability to discriminate. In this study, we provide evidence for a novel role of alpha pheromone receptors in mating partner discrimination that is independent of the known G protein-mediated signal transduction pathway. Furthermore, in response to pheromone, receptors become localized to the emerging region of morphogenesis that is positioned adjacent to the nucleus, suggesting that receptor localization may be involved in mating partner discrimination. Actin, myosin 2, and clathrin heavy chain are involved in mating partner discrimination, since strains carrying mutations in the genes encoding these proteins result in a small but significant defect in mating partner discrimination. 相似文献
16.
Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants 总被引:7,自引:0,他引:7
M A Goldsmith D M Desai T Schultz A Weiss 《The Journal of biological chemistry》1989,264(29):17190-17197
Previously we have described a system of somatic cell genetics (J.CaM1 and J.CaM2) for analyzing signal transduction via the T cell antigen receptor complex (CD3/Ti). Here we describe a third mutant, J.CaM3, which also expresses high levels of receptors that are functionally impaired. Like J.CaM1, J.CaM3 demonstrates partial signal transduction via CD3/Ti to only certain stimuli. J.CaM1, J.CaM2, and J.CaM3 define three non-Ti complementation groups involved in receptor function. To evaluate the mutations further we have introduced a heterologous receptor, the human muscarinic receptor 1 (HM1), into the parental Jurkat and mutant cell lines. This receptor demonstrates signal transduction competence in all these hosts, indicating that 1) T cells express the necessary apparatus for the coupling of HM1 to second messenger generation and 2) the mutations in the J.CaM family all affect molecules that are specific to CD3/Ti, and not HM1, function. Finally, the HM1 receptor exhibits partial sensitivity to cholera toxin in Jurkat cells, in contrast to the virtually complete sensitivity of CD3/Ti to cholera toxin. 相似文献
17.
Chemokine receptors belong to the superfamily of G protein-coupled receptors, which regulate the trafficking and activation of leukocytes, and operate as coreceptors in the entry of HIV-1. To investigate the early steps in the signal transmission from the chemokine-binding site to the G protein-coupling region we engineered metal ion-binding sites at putative extracellular sites in the chemokine receptor CXCR1. We introduced histidines into sites located in the second and third putative extracellular loops of CXCR1, creating single, double, and triple mutant receptors: R199H, R203H, D265H, R199H/R203H, R199H/D265H, R203H/D265H, R203H/H207Q, and R199H/R203H/D265H. Cells expressing the double mutants R199H/D265H and R203H/D265H and the triple mutant R199H/R203H/D265H failed to trigger interleukin 8-dependent calcium responses. Interestingly, calcium responses mediated by the single mutant R203H and the double mutants R199H/R203H and R203H/H207Q were blocked by Zn(II), indicating the creation of a functional metal ion-binding site. On the other hand, cells expressing all single, double, or triple histidine-substituted CXCR1 demonstrated high affinity binding to interleukin 8 in the presence and absence of metal ions. These findings indicate that occupation of the engineered metal-binding site uncouples the chemokine-binding site from the activation mechanism in CXCR1. Most importantly, we identify for the first time elements of an early signal transduction switch of chemokine receptors before the activation of cytoplasmic G proteins. 相似文献
18.
A role for IL-12 receptor expression and signal transduction in host defense in leprosy. 总被引:3,自引:0,他引:3
J Kim K Uyemura M K Van Dyke A J Legaspi T H Rea K Shuai R L Modlin 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(2):779-786
The generation of cell-mediated immunity against intracellular infection involves the production of IL-12, a critical cytokine required for the development of Th1 responses. The biologic activities of IL-12 are mediated through a specific, high affinity IL-12R composed of an IL-12Rbeta1/IL-12Rbeta2 heterodimer, with the IL-12Rbeta2 chain involved in signaling via Stat4. We investigated IL-12R expression and function in human infectious disease, using the clinical/immunologic spectrum of leprosy as a model. T cells from tuberculoid patients, the resistant form of leprosy, are responsive to IL-12; however, T cells from lepromatous patients, the susceptible form of leprosy, do not respond to IL-12. We found that the IL-12Rbeta2 was more highly expressed in tuberculoid lesions compared with lepromatous lesions. In contrast, IL-12Rbeta1 expression was similar in both tuberculoid and lepromatous lesions. The expression of IL-12Rbeta2 on T cells was up-regulated by Mycobacterium leprae in tuberculoid but not in lepromatous patients. Furthermore, IL-12 induced Stat4 phosphorylation and DNA binding in M. leprae-activated T cells from tuberculoid but not from lepromatous patients. Interestingly, IL-12Rbeta2 in lepromatous patients could be up-regulated by stimulation with M. tuberculosis. These data suggest that Th response to M. leprae determines IL-12Rbeta2 expression and function in host defense in leprosy. 相似文献
19.
Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family 总被引:6,自引:0,他引:6
Cytokines mediate the transduction of proliferative, differentiation and survival signals in the hematopoietic system. Although the cytokine family is large and diverse, many different cytokines display broadly overlapping functions. This can be explained by the fact that cytokine receptors often share multiple subunits. Specificity in signal transduction can however be achieved through several mechanisms. This review focuses on how signal specificity can be achieved within the IL-3, IL-5 and GM-CSF receptor family. This is discussed in terms of receptor expression, recent advances in our understanding of intracellular signalling components, and analysis of null mutant knock-out mice. 相似文献
20.
Signal transduction pathway under the influence of somatotropin have been identified basis on the analysis of Ca2+ release from intracellular stores of fresh and vitrified porcine oocytes using inhibitory analysis. Somatotropin and GTP individually stimulated Ca2+ release from intracellular stores. The joint action of somatotropin and GTP activated additional Ca2+ release from intracellular stores both in fresh and vitrified porcine oocytes. Treatment of the oocytes with inhibitor of protein kinase C caused no additional Ca2+ release from intracellular stores. Ca2+ release from intracellular stores stimulated by GTP was connected with phosphate hydrolysis. Moving between intracellular Ca2+ depots stimulated by GTP was not determined by phosphate hydrolysis. Inhibitor of protein kinase C and microtubules were involved in the interaction of various intracellular depots. The data obtained suggest that signal transduction pathway in porcine oocytes do not change after vitrification. 相似文献