首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type C retroviruses assemble at the plasma membrane of the infected cell. Attachment of myristic acid to the N terminus of the Gag precursor polyprotein has been shown to be essential for membrane localization and virus morphogenesis. Here, we report that the matrix (MA) protein contains regions that in conjunction with myristylation are important for Gag protein stability and the assembly of murine leukemia viruses. We identified these domains by generating a series of Akv murine leukemia virus mutants carrying small in-frame deletions within the coding region of the MA protein encompassing 129 amino acids. Studies show that mutants with deletions within the segment encoding the first 102 amino acids were all replication defective, whereas the C-terminal residues 103 to 124 seem not to have any critical function in virus maturation. Cells expressing the replication-defective genomes did not release any detectable Gag proteins. In one mutant, deletion of 3 amino acids in the N terminus resulted in an inefficiently myristylated, stable Gag polyprotein. The remaining defect genomes encoded unstable Gag proteins, although they were modified with myristic acid. The results suggest that the matrix domain plays an important role in stabilizing the Gag polyprotein.  相似文献   

2.
Processing of p60v-src to its myristylated membrane-bound form.   总被引:40,自引:12,他引:28       下载免费PDF全文
p60src of wild-type Rous sarcoma virus is myristylated at its N-terminal glycine residue. We have shown previously that this myristylation is necessary for p60src membrane association and for cell transformation by using src mutants with alterations within the N-terminal 30 kilodaltons of p60src. In this study we analyzed the process of p60src myristylation in wild type- and mutant-infected cells. All myristylated src proteins examined lack the initiator methionine, but two mutant src proteins lacking the initiator methionine are not myristylated, indicating that removal of the initiator methionine and myristylation are not obligatorily coupled. Analysis of the kinetics of myristylation and the association of p60src with cellular proteins p50 and p90 indicated that myristylation occurs before p60src becomes membrane associated and that transient association with p50 and p90 occurs regardless of myristylation. Myristylation is required for stable association of p60src with the plasma membrane but is not sufficient for membrane association. A mutant with an src deletion of amino acids 169 through 264 has an src protein that is myristylated but not membrane bound, remaining stably associated with p50 and p90. This mutant is transformation defective. Several N-terminal deletion mutants possessing tyrosine kinase activity have myristylated and membrane-bound src proteins but are not fully active in cell transformation, suggesting that additional N-terminal functional domains exist.  相似文献   

3.
Joshi SM  Vogt VM 《Journal of virology》2000,74(21):10260-10268
Purified retrovirus Gag proteins can assemble in vitro into virus-like particles (VLPs) in the presence of RNA. It was shown previously that a Rous sarcoma virus Gag protein missing only the protease domain forms spherical particles resembling immature virions lacking a membrane but that a similar protein missing the p10 domain forms tubular particles. Thus, p10 plays a role in spherical particle formation. To further study this shape-determining function, we dissected the p10 domain by mutagenesis and examined VLPs assembled within Escherichia coli or assembled in vitro from purified proteins. The results identified a minimal contiguous segment of 25 amino acid residues at the C terminus of p10 that is sufficient to restore efficient spherical assembly to a p10 deletion mutant. Random and site-directed mutations were introduced into this segment of polypeptide, and the shapes of particles formed in E. coli were examined in crude extracts by electron microscopy. Three phenotypes were observed: tubular morphology, spherical morphology, or no regular structure. While the particle morphology visualized in crude extracts generally was the same as that visualized for purified proteins, some tubular mutants scored as spherical when tested as purified proteins, suggesting that a cellular factor may also play a role in shape determination. We also examined the assembly properties of smaller Gag proteins consisting of the capsid protein-nucleocapsid protein (CA-NC) domains with short N-terminal extensions or deletions. Addition of one or three residues allowed CA-NC to form spheres instead of tubes in vitro, but the efficiency of assembly was extremely low. Deletion of the N-terminal residue(s) abrogated assembly. Taken together, these results imply that the N terminus of CA and the adjacent upstream 25 residues play an important role in the polymerization of the Gag protein.  相似文献   

4.
5.
Retroviruses are unusual in that expression of a single protein, Gag, leads to budding of virus-like particles into the extracellular space. We have developed conditions under which virus-like particles are formed spontaneously in vitro from fragments of Rous sarcoma virus (RSV) Gag protein purified after expression in Escherichia coli. The CA-NC fragment of Gag was shown previously to assemble into hollow cylinders (S. Campbell and V. M. Vogt, J. Virol. 69:6487-6497, 1995). We have now extended these studies to larger Gag proteins. In every case examined, assembly into regular structures required RNA. A nearly full-length Gag missing only the C-terminal PR domain, as well as similar proteins missing in addition the N-terminal half of MA, the C-terminal half of MA, the entire MA sequence, or the entire p2 sequence, all assembled into spherical particles resembling RSV in size. By contrast, proteins missing p10 assembled into cylindrical particles like those formed by CA-NC alone. Thin section electron microscopy showed that each of these Gag proteins formed in the expressing E. coli cells particles similar in shape to those seen in vitro. We conclude from these results that neither the sequences required for membrane binding in vivo, near the N terminus of Gag, nor the sequences required for a late step in budding, in the p2 portion of Gag, are essential for formation of virus-like particles in this system. Furthermore, we postulate the existence of a shape-determining sequence in p10, which provides or facilitates interactions required for the growing particle to be constrained to a spherical shape.  相似文献   

6.
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.  相似文献   

7.
Rous sarcoma virus is an example of a replication-competent retrovirus whose Gag protein is not modified with myristic acid. The purpose of the experiments described in this report was to determine whether the addition of this 14-carbon fatty acid would interfere with the replication of Rous sarcoma virus. We found that myristylated derivatives of the Rous sarcoma virus Gag protein are fully functional for particle formation in avian cells and that the addition of myristic acid has very little effect on infectivity.  相似文献   

8.
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.  相似文献   

9.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

10.
Incorporation of chimeric gag protein into retroviral particles.   总被引:2,自引:36,他引:2       下载免费PDF全文
The product of the Rous sarcoma virus (RSV) gag gene, Pr76gag, is a polyprotein precursor which is cleaved by the viral protease to yield the major structural proteins of the virion during particle assembly in avian host cells. We have recently shown that myristylated forms of the RSV Gag protein can induce particle formation with very high efficiency when expressed in mammalian cells (J. W. Wills, R. C. Craven, and J. A. Achacoso, J. Virol. 63:4331-4343, 1989). We made use of this mammalian system to examine the abilities of foreign antigens to be incorporated into particles when fused directly to the myristylated Gag protein. Our initial experiments showed that removal of various portions of the viral protease located at the carboxy terminus of the RSV Gag protein did not disrupt particle formation. We therefore chose this region for coupling of iso-1-cytochrome c from Saccharomyces cerevisiae to Gag. This was accomplished by constructing an in-frame fusion of the CYC1 and gag coding sequences at a common restriction endonuclease site. Expression of the chimeric gene resulted in synthesis of the Gag-cytochrome fusion protein and its release into the cell culture medium. The chimeric particles were readily purified by simple centrifugation, and transmission electron microscopy of cells that produced them revealed a morphology similar to that of immature type C retrovirions.  相似文献   

11.
An antiserum specific for the carboxy terminus of p60src, the transforming protein of Rous sarcoma virus, was produced by immunization of rabbits with a conjugate of bovine serum albumin and the synthetic peptide NH2-Tyr-Val-Leu-Glu-Val-Ala-Glu-COOH. The carboxy-terminal six amino acids of this peptide correspond in sequence to that deduced for the carboxy terminus of the p60src of the Schmidt-Ruppin strain of Rous sarcoma virus of subgroup A. The p60src proteins of the several strains of Rous sarcoma virus and the cellular homolog of the viral transforming protein, p60c-src, comprise a polymorphic family of polypeptides. The anticarboxy-terminal serum reacted readily with the p60src proteins of three different strains of Rous sarcoma virus. In contrast, no precipitation of cellular p60c-src could be detected with this serum. This suggests that the viral p60src proteins have identical carboxy termini and that the carboxy terminus of cellular p60c-src may be different from that of viral p60src. The anticarboxy-terminal serum reacted poorly with the subpopulation of viral p60src which is present in a complex with two cellular phosphoproteins. Apparently, the presence of the two cellular proteins interferes with the recognition of p60src by the anticarboxy-terminal serum. It seems likely, therefore, that these two cellular proteins bind to the carboxy-terminal domain of p60src.  相似文献   

12.
We have constructed mutants by using linker insertion followed by deletion in the region of cloned Rous sarcoma virus DNA coding for the N-terminal 9 kilodaltons of the src protein. Previous work implicated this region in the membrane association of the protein. The mutations had little effect on src tyrosine kinase activity. Substitution of a tri- or tetrapeptide for amino acids 15 to 27, 15 to 49, or 15 to 81 had little effect on the in vitro transforming capacity of the virus. Like wild-type p60src, the src proteins of these mutants associated with plasma membranes and were labeled with [3H]myristic acid. In contrast, a mutant whose src protein had the dipeptide Asp-Leu substituted for amino acids 2 to 81 and a mutant with the tripeptide Asp-Leu-Gly substituted for amino acids 2 to 15 were transformation defective, and the mutant proteins did not associate with membranes and were not labeled with [3H]myristic acid. These results suggest that amino acids 2 to 15 serve as an attachment site for myristic acid and as a membrane anchor. Since deletions including this region prevent transformation, and since tyrosine kinase activity is not diminished by the deletions, these results imply that target recognition is impaired by mutations altering the very N terminus, perhaps through their effect on membrane association.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

14.
M D Resh 《Cell》1989,58(2):281-286
The molecular basis for membrane association of pp60v-src, the transforming protein of Rous sarcoma virus, was investigated in a cell-free system. Newly synthesized pp60v-src polypeptide, produced by in vitro translation of src mRNA, rapidly bound to plasma membranes. Binding was saturable and dependent on the presence of myristate at the amino terminus of pp60v-src. Prior treatment of membranes with heat or trypsin greatly decreased subsequent binding of pp60v-src. Membrane binding of pp60v-src was competed by a myristylated peptide containing the first 11 amino acids of the mature src sequence, but not by non-myristylated src peptide or other myristylated peptides. The specificity, saturability, and competitive nature of pp60v-src binding provide evidence for the existence of a src receptor in the plasma membrane.  相似文献   

15.
Nucleocytoplasmic shuttling of the Rous sarcoma virus (RSV) Gag polyprotein is an integral step in virus particle assembly. A nuclear export signal (NES) was previously identified within the p10 domain of RSV Gag. Gag mutants containing deletions of the p10 NES or mutations of critical hydrophobic residues at positions 219, 222, 225, or 229 become trapped within the nucleus and exhibit defects in the efficiency of virus particle release. To investigate other potential roles for Gag nuclear trafficking in RSV replication, we created viruses bearing NES mutant Gag proteins. Viruses carrying p10 mutations produced low levels of particles, as anticipated, and those particles that were released were noninfectious. The p10 mutant viruses contained approximately normal amounts of Gag, Gag-Pol, and Env proteins and genomic viral RNA (vRNA), but several major structural defects were found. Thin-section transmission electron microscopy revealed that the mature particles appeared misshapen, while the viral cores were cylindrical, horseshoe-shaped, or fragmented, with some particles containing multiple small, electron-dense aggregates. Immature virus-like particles produced by the expression of Gag proteins bearing p10 mutations were also aberrant, with both spherical and tubular filamentous particles produced. Interestingly, the secondary structure of the encapsidated vRNA was altered; although dimeric vRNA was predominant, there was an additional high-molecular-weight fraction. Together, these results indicate that the p10 NES domain of Gag is critical for virus replication and that it plays overlapping roles required for the nuclear shuttling of Gag and for the maintenance of proper virion core morphology.  相似文献   

16.
The genomic RNA of retroviruses exists within the virion as a noncovalently linked dimer. Previously, we identified a mutant of the viral matrix (MA) protein of Rous sarcoma virus that disrupts viral RNA dimerization. This mutant, Myr1E, is modified at the N terminus of MA by the addition of 10 amino acids from the Src protein, resulting in the production of particles containing monomeric RNA. Dimerization is reestablished by a single amino acid substitution that abolishes myristylation (Myr1E-). To distinguish between cis and trans effects involving Myr1E, additional mutations were generated. In Myr1E.cc and Myr1E-.cc, different nucleotides were utilized to encode the same protein as Myr1E and Myr1E-, respectively. The alterations in RNA sequence did not change the properties of the viral mutants. Myr1E.ATG- was constructed so that translation began at the gag AUG, resulting in synthesis of the wild-type Gag protein but maintenance of the src RNA sequence. This mutant had normal infectivity and dimeric RNA, indicating that the src sequence did not prevent dimer formation. All of the src-containing RNA sequences formed dimers in vitro. Examination of MA-green fluorescent protein fusion proteins revealed that the wild-type and mutant MA proteins Myr1E.ATG-, Myr1E-, and Myr1E-.cc had distinctly different patterns of subcellular localization compared with Myr1E and Myr1E.cc MA proteins. This finding suggests that proper localization of the MA protein may be required for RNA dimer formation and infectivity. Taken together, these results provide compelling evidence that the genomic RNA dimerization defect is due to a trans-acting effect of the mutant MA proteins.  相似文献   

17.
R P Bennett  T D Nelle    J W Wills 《Journal of virology》1993,67(11):6487-6498
The Gag protein encoded by Rous sarcoma virus (RSV) is the only viral product required for the process of budding whereby virus particles are formed at the plasma membrane. Deletion analysis of this Gag molecule has revealed several regions (assembly domains) that are important for budding. One of these domains is located at the amino terminus and is needed for membrane binding. Another is located within the carboxy-terminal third of the protein. Though there is little sequence homology among the Gag proteins of unrelated retroviruses, it seemed possible that their assembly domains might be functionally conserved, and to explore this idea, numerous Gag chimeras were made. The results indicate that the first 10 amino acids of the human immunodeficiency virus (HIV) Gag protein can suppress the block to budding caused by deletions in the RSV MA sequence, much as described previously for the first 10 residues from the Src oncoprotein (J.W. Wills, R.C. Craven, R. A. Weldon, Jr., T. D. Nelle, and C.R. Erdie, J. Virol. 65:3804-3812, 1991). In addition, the carboxy-terminal half of the HIV Gag protein was fused to a truncated RSV Gag molecule, mutant Bg-Bs, which is unable to direct core assembly. This chimera was able to produce particles at a rate identical to that of RSV and of a density similar to that of authentic virions. Deletion analysis of the carboxy-terminal chimera revealed two small regions within the HIV NC protein that were sufficient for endowing mutant Bg-Bs with these properties. Chimeras lacking both regions produced particles of a low density, suggesting that these sequences may be involved in the tight packing of Gag molecules during assembly. In a related set of experiments, replacement of the RSV protease with that of HIV resulted in premature processing within the RSV sequence and a block to budding. Particle assembly was restored when the HIV PR activity was inactivated by mutagenesis. Collectively, the data presented here illustrate the functional similarities of Gag proteins from unrelated retroviruses.  相似文献   

18.
Rous sarcoma virus (RSV), a member of the avian sarcoma and leukosis family of retroviruses, has long been known to be capable of infecting and transforming mammalian cells; however, such transformed cells do not release virus particles. The RSV gag product (Pr76gag) produced in these cells is not released into the culture medium or proteolytically processed to release mature products. Thus, the behavior of Pr76gag in mammalian cells is much like that of mammalian retroviral Gag proteins which have been altered so as to block the addition of myristic acid at residue 2 (Gly). Because the RSV gag product does not possess a myristic acid addition site, we hypothesized that the creation of one by oligonucleotide-directed mutagenesis might permit particles to be released from mammalian cells. Two myristylated forms of Pr76 were created. In Pr76myr1, the first 10 amino acids have been exchanged for those of p60v-src, which are known to be sufficient for myristylation. In Pr76myr2, the Glu at the second residue has been substituted with Gly. The alleles encoding the modified and wild-type forms of Pr76 have been expressed at high levels in mammalian (CV-1) cells by using an SV40-based vector. Surprisingly, we have found that expression of high levels of the unmodified (wild-type) product, Pr76myr0, results in low levels of particle formation and precursor processing. This indicates that myristic acid is not the sole determinant for targeting. However, the addition of myristic acid to Pr76myr1 or Pr76myr2 resulted in a fivefold enhancement in Gag function. In all aspects examined, the behavior of myristylated Pr76 was identical to that of the authentic product produced in avian cells. We also show that processing is mediated by the gag-encoded protease and that removal of the amino terminus to create Pr76gagX results in an inability to form particles or be processed. This suggests that proper targeting is prerequisite for activation of the RSV protease in mammalian cells.  相似文献   

19.
The retroviral Gag polyprotein orchestrates the assembly and release of virus particles from infected cells. We previously reported that nuclear transport of the Rous sarcoma virus (RSV) Gag protein is intrinsic to the virus assembly pathway. To identify cis- and trans-acting factors governing nucleocytoplasmic trafficking, we developed novel vectors to express regions of Gag in Saccharomyces cerevisiae. The localization of Gag proteins was examined in the wild type and in mutant strains deficient in members of the importin-beta family. We confirmed the Crm1p dependence of the previously identified Gag p10 nuclear export signal. The known nuclear localization signal (NLS) in MA (matrix) was also functional in S. cerevisiae, and additionally we discovered a novel NLS within the NC (nucleocapsid) domain of Gag. MA utilizes Kap120p and Mtr10p import receptors while nuclear entry of NC involves the classical importin-alpha/beta (Kap60p/95p) pathway. NC also possesses nuclear targeting activity in avian cells and contains the primary signal for the import of the Gag polyprotein. Thus, the nucleocytoplasmic dynamics of RSV Gag depend upon the counterbalance of Crm1p-mediated export with two independent NLSs, each interacting with distinct nuclear import factors.  相似文献   

20.
Expression of the v-src gene of Rous sarcoma virus in avian embryo neuroretina cells results in transformation and sustained proliferation of these normally resting cells. Transformed neuroretina cells are also tumorigenic upon inoculation into immunodeficient hosts. We have previously described conditional mutants of Rous sarcoma virus encoding p60v-src proteins which induce proliferation of neuroretina cells in the absence of transformation and tumorigenicity. These results suggest that p60v-src is composed of functionally distinct domains which may interact with multiple cellular targets. In this study, we describe a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion of 278 base pairs in the 5' portion of the v-src gene but which has retained the ability to induce proliferation of quail neuroretina cells. The deleted v-src gene encodes a 45,000-molecular-weight phosphoprotein which contains both phosphoserine and phosphotyrosine, is myristylated, and possesses tyrosine kinase activity indistinguishable from that of wild-type p60v-src. Molecular cloning and sequence analysis of the mutant v-src gene have shown that this deletion extends from amino acid 33 to 126 of the wild-type p60v-src. Therefore, this portion of the v-src protein is dispensable for the mitogenic activity of Rous sarcoma virus in neuroretina cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号