首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20% ethanol intermittent-access (IAE) two-bottle-choice drinking procedure has been shown to produce high voluntary ethanol consumption in a number of rat strains. For this study, we applied this procedure to male Fischer (F344) rats, a strain previously reported to exhibit low levels of ethanol consumption. We also subjected these animals to a two-week ethanol-deprivation-period to see if they would exhibit an alcohol deprivation effect (ADE) signified by a transient increase in alcohol consumption following deprivation. Our data show a separation between high and low consuming animals within this strain, with high-consumers exhibiting an escalation in consumption. In contrast, Fischer rats did not show a significant separation between high and low consumers or any significant escalation in consumption, using the 20% ethanol continuous-access two-bottle-choice drinking protocol. Following the two-week deprivation period, animals in the high (but not the low) IAE group exhibited the transient increase in ethanol consumption and preference typically associated with an ADE. Together, the data suggest that the intermittent access protocol is a useful protocol for increasing ethanol consumption.  相似文献   

2.
3.
The purpose of the present study was to investigate whether Lewis (LEW) and spontaneously hypertensive rats (SHR), characterized in numerous behavioral tests as strains with high-anxiety and low-anxiety, respectively, could differ in their sensitivity to the effects of ethanol in the elevated plus maze (EPM) and the open field (OF), two classical models of anxiety/emotionality, as well as in the acquisition of ethanol drinking behavior. It was also of interest to examine the relationship between sweet and bitter fluids preference and ethanol intake. SHR and LEW rats were given saline or ethanol injections (0.6 or 1.2 g/kg, ip.) and tested in the EPM and OF. Subsequently the same animals were given continuous free choice between water and ethanol solution (2-8%). Additional groups of animals were exposed to a free-choice regimen between saccharin (0.002-0.09%) or quinine (0.0001-0.0015%) and water. The low dose of ethanol (0.6 g/kg) induced anxiolytic-like effects and intensive locomotor activation mainly in SHR rats tested in the OF arena. Overall, LEW counterparts were unaffected in OF test. In oral self-administration paradigm, SHR rats consumed significantly more ethanol than LEW rats. Concerning other solutions, SHR rats consumed large amounts of saccharin compared with LEW rats. These data indicate that the SHR preference for ethanol intake may be positively related to their differential sensitivity to the anxiolytic/stimulant effects of ethanol and to the sensitivity of this strain for saccharin reinforcement. In addition, these findings provide evidence that the SHR strain may represent a useful genetic and pharmacological tool to investigate ethanol drinking traits.  相似文献   

4.
In separate experiments, nine (n = 20) and fifteen (n = 12) month old rats were treated with either 6% ethanol or 12% sucrose (to balance caloric intake) in the drinking water to examine the effect of chronic ethanol consumption on the hypothalamic-pituitary-adrenal axis of aged rats. Rats were maintained on these treatment regimens for thirty days and were killed by decapitation. Blood was collected and plasma concentrations of adrenocorticotropin (ACTH) and corticosterone were determined by radioimmunoassay. Adrenal glands were cleaned, quartered and used to test in vitro responsiveness to ACTH. Anterior pituitary glands from all 15 month old rats and one half of the nine month old rats were collected, frozen and extracted for measurement of tissue ACTH concentration. The remaining anterior pituitary glands from the nine month old rats were challenged with corticotropin releasing hormone (CRH) to test in vitro responsiveness. In nine month old rats, chronic ethanol consumption decreased plasma ACTH and corticosterone (P less than 0.05). Pituitary ACTH concentrations were unchanged in treated nine month old rats, but the amount of pituitary ACTH released in response to CRH was decreased (P less than 0.05) in rats consuming ethanol. In vitro responsiveness of the adrenal gland to ACTH in nine month old rats consuming ethanol was unchanged (P greater than 0.05). Plasma ACTH and corticosterone concentrations were also decreased in 15 month old rats chronically consuming ethanol (P less than 0.05). No differences were noted in responsiveness of the adrenal gland or in the amount of pituitary ACTH due to ethanol consumption in 15 month old rats (P greater than 0.05). The results of these experiments indicate that chronic ethanol consumption decreases hypothalamic-pituitary-adrenal function in aged rats.  相似文献   

5.
Light to moderate drinking in humans lowers the risk of coronary heart disease and may lower blood pressure. We examined the effect of chronic low daily alcohol consumption on blood pressure, platelet cytosolic free calcium [Ca2+]i, tissue aldehyde conjugates and renal vascular changes in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We also examined the effects of the same weekly amount of alcohol consumption over a one day period each week simulating weekend drinking in humans. Animals, age 7 weeks, were divided into six groups of six animals each and were treated as follows: WKY and SHR control, normal drinking water; WKY and SHR, 0.5% ethanol in drinking water; WKY and SHR, 3.5% ethanol in drinking water one day/week. After 14 weeks systolic blood pressure, platelet [Ca2+]i, liver, kidney and aortic aldehyde conjugates were significantly higher (p < 0.05) in untreated SHRs as compared to untreated WKYs. Daily 0.5% ethanol consumption in SHRs significantly (p < 0.05) attenuated these changes and also attenuated smooth muscle cell hyperplasia and narrowing of the lumen in small arteries and arterioles of the kidney. WKY rats treated with 0.5% ethanol had lower aldehyde conjugates without any significant effect on blood pressure and platelet [Ca2+]i as compared to WKY controls. Consumption of 3.5% ethanol one day/week did not affect blood pressure and associated changes in normotensive WKY rats or hypertensive SHRs as compared to their respective controls. These results suggest that chronic daily low ethanol intake lowers blood pressure in SHRs by lowering tissue aldehyde conjugates and cytosolic free calcium.  相似文献   

6.
Cifani C  Guerrini R  Massi M  Polidori C 《Peptides》2006,27(11):2803-2810
Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.  相似文献   

7.
The effects of ethanol administration on exocrine pancreas have been widely studied, but little is known about the effect of dietary fiber in combination with chronic ethanol on exocrine pancreatic function. The aim of this work was to examine the chronic effects of a high fiber diet, ethanol ingestion, and a combination of both on the function of the rat exocrine pancreas. Four groups of rats were fed for six months the following diets: 1.- NW: standard laboratory diet; 2.- FW: high fiber diet (15% cellulose); 3.- NE: standard laboratory diet and 20% ethanol in the drinking water; and 4.- FE: high fiber diet and 20% ethanol. Cholecystokinin (CCK) and acetylcholine (Ach) effects on amylase release and intracellular calcium mobilization in pancreatic acini were studied. In rats fed a 20% ethanol (NE), both the basal amylase release and the basal [Ca(2+)](i) were significantly increased; nonetheless, CCK and Ach-induced amylase release were significantly reduced compared with control rats. Ach- but not CCK-stimulated [Ca(2+)](i) increase in NE rats was significantly decreased compared with NW. In rats fed a combination of ethanol and a high fiber diet (FE) all the parameters under study were not significantly affected compared to control rats (NW). In conclusion, high fiber consumption does not alter the function of the exocrine pancreas. However, it ameliorates the deleterious effect of chronic ethanol consumption on pancreatic amylase secretion and, at least partially, reverses the ethanol-induced alterations on [Ca(2+)](i) in the rat exocrine pancreas.  相似文献   

8.
Liver mitochondria were isolated from male rats exposed for 2 months to low doses of ethanol (3% v/v in drinking water), a condition not associated with tolerance or dependence. The results show no significant changes in the content of reduced or oxidized glutathione in the liver mitochondria of ethanol treated rats with respect to controls. However, a slight but significant increase in lipid peroxidation, accompanied by an increased content of oxidized proteins, was found in ethanol exposed animals. Mitochondrial content of cytochrome complexes was not significantly affected by ethanol intake. The specific enzymatic activity of cytochrome oxidase showed, however, a significant decrease in ethanol-treated rats. The slight mitochondrial alterations found in the liver of rats exposed chronically to low doses of ethanol might represent the beginning of a more extensive damage previously observed in rats exposed to high doses of this substance.  相似文献   

9.
Low ethanol intake prevents salt-induced hypertension in WKY rats   总被引:2,自引:0,他引:2  
Low alcohol intake in humans lowers the risk of coronary heart disease and may lower blood pressure. In hypertension, insulin resistance with altered glucose metabolism leads to increased formation of aldehydes. We have shown that chronic low alcohol intake decreased systolic blood pressure (SBP) and tissue aldehyde conjugates in spontaneously hypertensive rats and demonstrated a strong link between elevated tissue aldehyde conjugates and hypertension in salt-induced hypertensive Wistar-Kyoto (WKY) rats. This study investigated the antihypertensive effect of chronic low alcohol consumption in high salt-treated WKY rats and its effect on tissue aldehyde conjugates, platelet cytosolic free calcium ([Ca2 +] i ),and renal vascular changes. Animals, aged 7 weeks, were divided into three groups of six animals each. The control group was given normal salt diet (0.7% NaCl) and regular drinking water; the high salt group was given a high salt diet (8% NaCl) and regular drinking water; the high salt + ethanol group was given a high salt diet and 0.25% ethanol in drinking water. After 10 weeks, SBP, platelet [Ca2 +] i , and tissue aldehyde conjugates were significantly higher in rats in the high salt group as compared with controls. Animals on high salt diets also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidney. Ethanol supplementation prevented the increase in SBP and platelet [Ca2 +] i and aldehyde conjugates in liver and aorta. Kidney aldehyde conjugates and renal vascular changes were attenuated. These results suggest that chronic low ethanol intake prevents salt-induced hypertension and attenuates renal vascular changes in WKY rats by preventing an increase in tissue aldehyde conjugates and cytosolic [Ca2 +] i .  相似文献   

10.
Using modified Porsolt's method, the electrophysiological sleep pattern was studied in normal conditions and after a single intraperitoneal ethanol injection to noninbred male albino rats divided into 2 groups ("high activity" and "low activity" rats). Voluntary alcohol intake in these rats was measured during free choice between 10% ethanol and water for 20 days. "Low activity" rats were characterized by a statistically significant 3.4-fold higher level of ethanol consumption and 2.7-fold longer REM-sleep stage, as compared to "high activity" animals. In "low activity" animals ethanol (1 g/k, 10% solution, i. p.) inhibits and in "high activity" rats it increases REM-sleep stage, thus removing differences in the sleep pattern in the two groups of rats. The data obtained suggest a possible role of REM-sleep in the development of alcohol motivation.  相似文献   

11.
Chow-fed rats were given 15% ethanol in their drinking water for 4 weeks, and then for the next 2 weeks of ethanol exposure they were fed isocaloric semisynthetic diets enriched in either saturated (S) or polyunsaturated (P, linoleic acid) fats. Food intake was lower in ethanol-fed (ETH) than in control (C) rats, but the average body weight gain was similar in ETH and C fed S or P. Intestinal dry weight and the percentage of the intestinal wall comprised of mucosa were more than 2-fold higher in ETH than C fed P, whereas these values were 50% lower in ETH than C fed S. The in vitro jejunal uptake of glucose and galactose was higher in ETH than C fed S, whereas the converse was true when feeding P. These effects were due to differences in the values of the maximal transport rate (Vmax), the Michaelis constant (Km), and the contribution of passive permeation. The relative permeability of the intestine to lipids was unchanged by giving ethanol or by feeding S or P, but the individual rates of uptake of most medium- and long-chain fatty acids and cholesterol were lower in ETH fed P as compared with S. In a second series of studies the acute effect of ethanol exposure was examined: animals were fed S or P for 2 weeks and the intestine was then removed: when 5% ethanol was added directly to the test solutions, there was lower in vitro jejunal and ileal uptake of glucose and higher jejunal uptake of 18:2 when rats were previously fed P, but not in those fed S. In summary; (1) feeding an isocaloric polyunsaturated fatty acid diet has a trophic effect on the intestinal mucosa of animals chronically drinking ethanol; and (2) feeding rats a diet enriched with saturated fatty acids prevents the inhibitory effects of acute and chronic ethanol exposure on the in vitro jejunal uptake of glucose, galactose and lipids observed in animals fed a polyunsaturated diet. Thus, the effect of chronic consumption of ethanol on the active and passive jejunal uptake of nutrients is influenced by the type of lipids in the animal's diet.  相似文献   

12.
Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be because of factors that predate drug exposure (e.g. genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol-naive rats selectively bred based on their high [high alcohol drinking (HAD)] or low [low alcohol drinking (LAD)] consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess 'choice' impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. High alcohol drinking rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically predisposed individuals.  相似文献   

13.
Chronic intracerebroventricular (ICV) treatment with nociceptin/orphanin FQ (NC), the endogenous ligand for the opioid receptor-like 1 (ORL1) receptor, reduces ethanol intake in alcohol-preferring rats and abolishes the rewarding properties of ethanol in the place conditioning paradigm. To pharmacologically characterize the receptor involved, the present study evaluated the effect on ethanol drinking in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats of ICV injections for 8 days of NC or of the NC analogs NC(1-17)NH(2), NC(1-13)NH(2), NC(1-12)NH(2) and [Nphe(1)]NC(1-13)NH(2). In vitro studies indicate that NC, NC(1-17)NH(2), NC(1-13)NH(2) and NC(1-12)NH(2) are agonists, while [Nphe(1)]NC(1-13)NH(2) is a selective antagonist at the ORL1 receptor. Freely feeding and drinking rats were offered 10% ethanol 30 min/day at the beginning of the dark phase of the light cycle. NC significantly attenuated ethanol intake at 500 or 1000 ng/rat (210 or 420 pmol/rat). NC(1-17)NH(2), markedly reduced ethanol intake, but its effect was statistically significant at 1000 (420 pmol/rat), not at 500 ng/rat (210 pmol/rat). After the end of treatment ethanol drinking promptly came back to baseline level. Ethanol consumption was also reduced by NC(1-13)NH(2); however, its effect was less potent and pronounced. NC(1-12)NH(2) did not modify ethanol intake at doses up to 4000 ng/rat (2339 pmol/rat). Water and food consumption were not modified. Treatment with [Nphe(1)]NC(1-13)NH(2), 66 or 99 microg/rat, did not modify ethanol intake; however, [Nphe(1)]NC(1-13)NH(2), 66 microg/rat, given just before 1000 ng/rat of NC(1-17)NH(2), abolished the effect of the agonist. The present results show that the 13 amino acid N-terminal sequence of NC is essential for the effect on ethanol intake and indicate that [Nphe(1)]NC(1-13)NH(2) acts as an antagonist to block the effect of NC. These findings provide further evidence that selective agonists at the ORL-1 receptor attenuate ethanol intake in alcohol-preferring rats and suggest that the NC/ORL1 system may represent an interesting target for treatment of alcohol abuse.  相似文献   

14.
Late-onset drinking is a common problem in elderly people related to stress induced by social isolation. Experiments were performed in order to evaluate the effects of alprazolam, a benzodiazepine agonist anxiolytic, on the free-choice ethanol consumption in aged rats subjected to isolation stress. The animals we offered a two-bottle choice consumption (one of 0.2% saccharin and the other with 10% ethanol/0.2% saccharin) and then exposed to 4 days of isolation stress on an irregular, unpredictable schedule. Stress resulted in significant increase in ethanol consumption. Treatment with alprazolam (1 mg/Kg) partially reversed this adverse effect of stress.  相似文献   

15.
Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by alcohol-preferring P rats as a result of chronic voluntary exposure may have favorable vs. detrimental effects on lipid profiles in this genetic line, consistent with data supporting beneficial cardioprotective and neuroprotective effects of moderate ethanol consumption.  相似文献   

16.
He L  Whistler JL 《PloS one》2011,6(5):e19372
It is well known that the mu-opioid receptor (MOR) plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2) protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.  相似文献   

17.
Much M  Dadmarz M  Hofford JM  Vogel WH 《Life sciences》2002,70(19):2243-2252
The effects of four different diets (control diet: 19.5% protein, 60.5% carbohydrate, 10% fat; diet I: 65% protein, 10% carbohydrate, 10% fat; diet II: 5% protein, 76% carbohydrate, 10% fat; diet III: 20% protein, 69% carbohydrate, 1% fat; diet IV: 69% protein, 15% carbohydrate, 1% fat) and supplementation with 3 amino acids (tryptophan: 150 mg/kg/d; arginine: 400 mg/kg/d; taurine: 380 mg/kg/d) on the voluntary consumption of ethanol were investigated in rats using the 2 bottle method. First, rats received the control diet and diets I, II, III and IV for 20 days with a choice of ethanol for the last 6 days only. Ethanol consumption was similar in all dietary groups. Second, rats received the control diet for 8 days followed by diets I, II and IV for another 8 days. Ethanol was offered throughout both periods. The switch to the special diets did not affect ethanol consumption. Third, rats received a control diet with arginine, tryptophan or taurine added to the drinking fluids for 16 days with a choice of ethanol for the last 5 days; thereafter supplementation stopped but the ethanol choice remained. No difference in the voluntary intake of ethanol was noted but ethanol consumption fell after cessation of arginine supplementation. In conclusion, diets differing greatly in their composition or supplementation with these 3 amino acids did not affect the voluntary choice of ethanol by rats in a significant manner.  相似文献   

18.
Chronic ethanol ingestion decreases the number of somatostatin (SRIF) receptors in the rat frontoparietal cortex and female sex hormones modulate the effects of ethanol in the brain. Therefore, we investigated the differential effects of ethanol consumption on the SRIFergic system in the frontoparietal cortex of virgin and parturient rats given ethanol in their drinking water before and during gestation. In parturient rats, ethanol consumption decreased the density of SRIF receptors (25%, p<0.01 vs control parturient group) whereas the SRIF-like immunoreactivity (SRIF-LI) content was increased (140%, p<0.01). In virgin rats, ethanol ingestion decreased the density of SRIF receptors (42%, p<0.01) more than in alcoholic parturient rats. SRIF-LI levels were unaffected. The inhibitory effect of SRIF on basal and forskolin-stimulated adenylyl cyclase was significantly lower in alcoholic virgin rats as compared to alcoholic parturient rats. No differences in the levels of the G inhibitory (Gi) alpha1 and Gialpha2 proteins were observed among the experimental groups. These results suggest that gestation may confer partial resistance to the ethanol-induced effect on the SRIFergic system.  相似文献   

19.
Intracerebroventricular administration of NPY suppresses ethanol intake in selectively bred alcohol-preferring rat lines, but not in rats selectively bred for low ethanol drinking or in unselected Wistar rats, when access to ethanol is limited to 2h/day. However, when rats undergo chronic (24h/day) ethanol drinking (or exposure to ethanol by vapor inhalation) and have periods of imposed ethanol abstinence, the reductions in ethanol drinking following NPY administration are enhanced in alcohol-preferring rats and are also observed in unselected Wistar rats. Thus, sensitivity to the effects of NPY on ethanol drinking appears to be altered by selective breeding for ethanol preference and by a prior history of chronic but intermittent exposure to ethanol.  相似文献   

20.
The influence of intracisternal administration of antiserum to the neurospecific brain gamma gamma-enolase (aS-gamma gamma) on the consumption of 7.5% ethanol solution by rats was studied. Injection of aS-gamma gamma decreased the ethanol intake by the rats which had been drinking 15% solution of ethanol for 7 months as a single source of liquid. In vitro aS-gamma gamma caused 4-fold inhibition of the gamma gamma-enolase activity while it did not influence the alpha alpha-enolase activity. Intracisternal administration of aS-gamma gamma shifted enolase isoenzyme spectra in the direction of the decrease of gamma gamma-enolase content. It is suggested that the effect of aS-gamma gamma on ethanol consumption is due to inhibition of the activity of gamma gamma-enolase which participates in energy metabolism in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号