首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This first assessment of sponges on Australia’s deep western continental margin (100–1,100 m) found that highly species-rich sponge assemblages dominate the megabenthic invertebrate biomass in both southwestern (86%) and northwestern (35%) areas. The demosponge orders Poecilosclerida, Dictyoceratida, Haplosclerida, and Astrophorida are dominant, while the presence of the order Agelasida, lithistid sponges, and the Verongida are noteworthy in providing contrasts to other studies from the deep temperate Australian margin. Most sponge species appeared to be rare as two-thirds were present in only one or two samples—a finding consistent with studies of the shallow Australian sponge fauna. The Demospongiae and Calcarea had similar distribution and abundance patterns being found in the greatest numbers in the south on the outer shelf and shelf edge in hard substrates. In contrast, the Hexactinellida were more abundant at deeper depths and in soft substrates, and were more common in the north. Although the environmental factors that influence sponge distributions on the western margin cannot be completely understood from the physical covariates analyzed in this study, the data suggest depth-related factors, substrate type, and current regimes are the most influential. Incompletely documented historic demersal trawling may partly account for the lower sponge biomass found in the north. The potentially high importance of sponges to benthic ecosystems, as well as the potential for high impacts on sponges by bottom trawling, indicates that maintaining healthy sponge assemblages should be an important consideration for marine conservation planners. Successful management will need to be under-pinned by additional research that better identifies the ecological roles of sponges, and their distributions over local and broad environmental scales.  相似文献   

2.
The high/low microbial abundance (HMA/LMA) dichotomy in sponges has been the subject of several studies over recent years, but few studies have analysed this dichotomy in terms of the sponge archaeal community and function. Using a 16S rRNA gene barcoded pyrosequencing approach and predictive functional analysis (PICRUSt) we compared the archaeal composition, richness and predicted function of one HMA sponge (Xestospongia testudinaria), one LMA sponge (Stylissa carteri) and one sponge species of unknown microbial abundance (Aaptos lobata). Although most of the archaeal sequences were assigned to the Crenarchaeota phylum, S. carteri had the highest percentage of sequences assigned to the Euryarchaeota phylum. Variation among sponge species explained >85% of the variation in archaeal operational taxonomic unit (OTU) composition with each sponge species forming a distinct cluster. There were significant differences in predicted PICRUSt profiles among sponge species, suggesting that archaeal communities present in the studied sponge species may perform different functions. X. testudinaria and A. lobata were similar both in terms of OTU and KEGG orthologues composition, which may indicate that A. lobata is a HMA sponge. Additionally, some of the most enriched functions seem to be related to traits associated with high and low microbial abundance sponges.  相似文献   

3.
4.
5.
6.
Ruzicka R  Gleason DF 《Oecologia》2008,154(4):785-794
It has been proposed that predation pressure declines with increasing latitude and a positive correlation exists between predation intensity and the investment into chemical defenses. However, little direct evidence supports the idea that tropical species are better defended chemically than their temperate counterparts. Temperate reefs of the South Atlantic Bight (SAB) off Georgia, USA, provide a unique opportunity to study tropical sponges in a temperate environment. We documented sponge species richness and abundance, sponge predator density, and examined the ability of eight sponge species to chemically deter predation by fishes on two reefs in the SAB. We used rarefaction analysis and ANOVA to compare our results for sponge species richness and density, respectively, with similar published studies conducted on reefs of the sub-tropical Atlantic (i.e., Florida Keys). These analyses were combined with similar statistical comparisons for spongivorous fish species richness and density. Results showed that sponge species richness was lower, but sponge density was higher, on the temperate SAB reefs than on the subtropical reefs. Both spongivorous fish diversity and density were lower on the SAB reefs. The greater abundance of sponges and lower density of predators on SAB reefs suggest a lower frequency of predation on sponges on SAB reefs. Of the eight sponge species assayed from the SAB reefs, five possessed chemical extracts that were significantly less deterrent to fish predators than their tropical/subtropical conspecifics. When the results were combined across all sponge species, the chemical deterrence of fish predators was significantly lower for extracts obtained from the temperate sponge community as compared to the tropical/subtropical assemblage. These results support the more general hypothesis that a lower density and diversity of sponge predators occurs at high as compared to low latitudes in the western Atlantic and may contribute to decreased investment in chemical defenses.  相似文献   

7.
Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.  相似文献   

8.
Weisz JB  Lindquist N  Martens CS 《Oecologia》2008,155(2):367-376
The evolution of marine demosponges has led to two basic life strategies: one involving close associations with large and diverse communities of microorganisms, termed high microbial abundance (HMA) species, and one that is essentially devoid of associated microorganisms, termed low microbial abundance (LMA) species. This dichotomy has previously been suggested to correlate with morphological differences, with HMA species having a denser mesohyl and a more complex aquiferous systems composed of longer and narrower water canals that should necessitate slower seawater filtration rates. We measured mesohyl density for a variety of HMA and LMA sponges in the Florida Keys, and seawater pumping rates for a select group of these sponges using an in situ dye technique. HMA sponges were substantially denser than LMA species, and had per unit volume pumping rates 52–94% slower than the LMA sponges. These density and pumping rate differences suggest that evolutionary differences between HMA and LMA species may have resulted in profound morphological and physiological differences between the two groups. The LMA sponge body plan moves large quantities of water through their porous tissues allowing them to rapidly acquire the small particulate organic matter (POM) that supplies the majority of their nutritional needs. In contrast, the HMA sponge body plan is suited to host large and tightly packed communities of microorganisms and has an aquiferous system that increases contact time between seawater and the sponge/microbial consortium that feeds on POM, dissolved organic matter and the raw inorganic materials for chemolithotrophic sponge symbionts. The two evolutionary patterns represent different, but equally successful patterns and illustrate how associated microorganisms can potentially have substantial effects on host evolution. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Morphologic and phylogenetic analysis of freshwater sponges endemic to lakes in Central Sulawesi, Siberia and South-East Europe is presented. We also analyzed several cosmopolitan sponge species from Eurasia and North America and included sponge sequences from public databases. In agreement with previous reports [Addis, J.S., Peterson, K.J., 2005. Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. Zool. Scr. 34, 549-557], the metaniid sponge Corvomeyenia sp. was the most deeply branching species within a monophyletic lineage of the suborder Spongillina. Pachydictyum globosum (Malawispongiidae) and Nudospongilla vasta (Spongillidae), two morphologically quite distinct species from Sulawesi were found in a joint clade with Trochospongilla (Spongillidae) rendering Trochospongilla paraphyletic. Furthermore, Ochridaspongia sp., another Malawispongiidae, clustered far away from that clade, together with Ephydatia fluviatilis, making the latter family polyphyletic. The Lubomirskiidae endemic to Lake Baikal, Lubomirskia abietina, Baikalospongia bacillifera, B. intermedia, and Swartschewskia papyracea formed a well-supported clade that was most closely linked to the genus Ephydatia (99.9% identity over a total length of 2169 concatenated nucleotide positions). Our study indicates the frequent and independent origin of sponge species endemic to different freshwater ecosystems from a few cosmopolitan founder species. The highly specific primer sets newly developed here facilitate work on the molecular phylogeny and DNA barcoding of sponges.  相似文献   

10.
The exceptional ability of marine sponges to adapt to often drastic changes of their environments could be due to special structural features in cell membranes, including firstly phospholipids (PL). Thus, PL class composition was investigated in marine sponges (22 species from 19 genera to 15 families) originating from various locations (East Atlantic, North Atlantic, South-West Pacific, Mediterranean Sea, Red Sea, Arabian–Persian Gulf). The quantitative determination of PL class composition was obtained by high-performance thin-layer chromatography (HPTLC) with scanning densitometry of the different spots. Previous reports have shown phosphatidylethanolamine (PE) as the major PL class in marine sponges, followed by phosphatidylcholine (PC), while other papers described PC as a minor class and even lacking. This survey found PE as the major PL class in only two species, while PC was the major class in 13 species including a calcareous one. The great abundance of bacteria in some sponges was evidenced from the relatively high proportions of particular PL classes. Various PL distributions were observed even for the sponge species collected in the same area and belonging to the same genus. Thus, no clear rule on PL composition in marine sponges can be stated to date.  相似文献   

11.
New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiellagen. n.ridgenensissp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.  相似文献   

12.
The production of marine sponge biomass is one of the main outstanding goals of marine biotechnology. Due to the increased number of sponge secondary metabolites of economical value the interest in sponge cultivation increased over the last years, too. Therefore, we examined cultivation properties of 11 Mediterranean sponge species. Two methodologies were tested: functional fragment culture and multicell reaggregate culture. The in vitro cultivation of sponge fragments without further dissociation and reaggregation is a method formerly not reported. Reaggregates and functional fragments are promising attempts for culture system development. A broad spectrum of reaggregation properties was found among the species tested. In three species multicell aggregate cultures could be maintained for several months: Petrosia ficiformis, Suberites domuncula and Acanthella acuta. Our results indicate that cellular aggregates or fragments of sponges can be valuable tools in the development of methods for biotechnological production of sponge biomass. Further focus on nutritional demands and the biochemical status of the cells in these kind of cellular associations are needed in order to obtain functional aggregates and fragments.  相似文献   

13.
Because sublittoral sponges of temperate areas are usually more abundant at sites with low algal abundance, there is the widespread notion that macroalgae out-compete and displace sponges to habitats less suitable for algal proliferation. In this study, based on 292 sampling quadrats, we collected a total of 87 demosponge species and examined the level at which sponge distribution pairs with a variety of alga-dominated and animal-dominated habitats occurring in three zones located across a marked in-bay/out-bay environmental gradient. We found significant differences in sponge biomass, richness and diversity between the 18 habitats considered in the three zones, with abundance, richness and diversity being significantly higher in caves, vertical surfaces and overhangs out of the bay than in the remaining habitats. The cluster analysis and the unconstrained ordination consistently reflected the in-bay/out-bay environmental gradient. These analyses also revealed that the taxonomic distribution of sponge abundance is independent of the algal occurrence in the habitat, being more related to between-zone differences than to between-habitat differences. This trend was corroborated when the role of depth, algal abundance and substratum inclination in explaining total sponge abundance and diversity was examined by canonical correspondence analysis, regression analysis and mean comparisons. These analyses pointed to substratum inclination, rather than to algal abundance, as the factor explaining most variation in distribution of sponge abundance. These results, when discussed in the context provided by the outcome of other studies concerned with the spatial distribution of the sessile benthos in rocky temperate communities, strongly suggest a need to re-examine the idea that spatial distribution of sublittoral sponges largely results from competition with macroalgae.  相似文献   

14.
A large number of novel compounds with significant medical potential have been isolated from sponges, motivating efforts to develop techniques for the sustainable cultivation of sponge biomass. To date, 33 sponges from nine different orders have been examined to assess their ability to be cultured in vitro. However, little consideration has been given to the relationships between these sponges; only one report has considering the phylogenetic relationships between the species. On the basis of morphological data, no taxonomic specificity was apparent as an indicator for the successful cultivation of the sponges. As the systematic classification of the Demospongiae is poorly understood, we collated available information on the success of in vitro sponge cell cultivation reports and examined the phylogenetic relationships of these sponges through the use of 18S and 28S rDNA sequence data. Based on molecular data, the ability of sponges to form primary aggregates from the dissociated cells of marine demosponges indicates that taxonomic trends may exist, emphasizing the need to better characterize sponges being investigated for biotechnological applications. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A new genus and species of freshwater sponge, Clypeatula cooperensis , collected from three lakes in the Northern Rocky Mountains of Montana, USA, are described. The sponge grows as a hard, disc-shaped encrustation on the undersides of rocks and logs. It lacks microscleres and has amphioxeal megascleres that often show a slight midregion bulb and are usually covered with short, conical spines except at their tips. The sponge is also non-gemmulating, overwintering in a regressed state in which choanocyte chambers are reduced in number. Phylogenetic analyses of complete 18S rDNA sequences of C. cooperensis , Ephydatia muelleri , Spongilla lacustris and Eunapius fragilis suggest that C. cooperensis is more closely related to Ephydatia muelleri than to Spongilla lacustris or Eunapius fragilis . Our data, nonetheless, do not rule out the possibility that C. cooperensis is more closely related to the non-gemmulating sponges of Lake Baikal (Russia) than it is to Ephydatia muelleri . These phylogenetic analyses support the erection of a new genus, the monophyly of freshwater sponges belonging to the families Spongillidae and Lubomirskiidae, and the monophyly of demosponges.  相似文献   

16.
The giant barrel sponges Xestospongia muta and Xestospongia testudinaria are ubiquitous in tropical reefs of the Atlantic and Pacific Oceans, respectively. They are key species in their respective environments and are hosts to diverse assemblages of bacteria. These two closely related sponges from different oceans provide a unique opportunity to examine the evolution of sponge-associated bacterial communities. Mitochondrial cytochrome oxidase subunit I gene sequences from X. muta and X. testudinaria showed little divergence between the two species. A detailed analysis of the bacterial communities associated with these sponges, comprising over 900 full-length 16S rRNA gene sequences, revealed remarkable similarity in the bacterial communities of the two species. Both sponge-associated communities include sequences found only in the two Xestospongia species, as well as sequences found also in other sponge species and are dominated by three bacterial groups, Chloroflexi, Acidobacteria, and Actinobacteria. While these groups consistently dominate the bacterial communities revealed by 16S rRNA gene-based analysis of sponge-associated bacteria, the depth of sequencing undertaken in this study revealed clades of bacteria specifically associated with each of the two Xestospongia species, and also with the genus Xestospongia, that have not been found associated with other sponge species or other ecosystems. This study, comparing the bacterial communities associated with closely related but geographically distant sponge hosts, gives new insight into the intimate relationships between marine sponges and some of their bacterial symbionts.  相似文献   

17.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

18.
Recent (2004) boxcoring on the SW Rockall Bank, west of Ireland (approx. 55°N 15°W, depths between 557 and 1407 m) yielded 95 species of sponges in 20 boxcore attempts. There are no published reports of Rockall Bank coral reef sponge fauna, but comparison with trawl and dredge efforts in neighbouring parts of the NE Atlantic (east of Rockall Trench, off the Scottish coasts) made in the late 19th and early 20th century leads to the conclusion that our boxcoring efforts yielded similar numbers of species as these more elaborate collecting programs. Numbers of specimens for all boxcore samples combined was 466, together occupying a total volume of approx. 3.38 l, based on length x width x height measurements of all individuals. These results indicate a generally low biomass of sponges contributing to the deep water coral reef fauna. Species composition in this bathyal habitat shows a high heterogeneity (Eveness J': 0.81-0.97) and the majority of sponge individuals does not exceed 1 cm3 in volume. Nevertheless, high densities of a large hexactinellid species, Asconema aff. setubalense (up to 30 cm in height), were encountered locally. Sponge community analysis showed that there was no clear correlation between coral cover and sponge diversity, and only a weak correlation between coral cover and abundance and volume of sponges. This, combined with the overall very small size of the sponges, suggests that substratum is not a limiting factor for their occurrence.  相似文献   

19.
Abundant and well-preserved assemblages of disarticulated sponge spicules occur in Middle and Late Cambrian platform carbonates of western Hunan, China. Assemblages recovered from 11 stratigraphic horizons include calcisponges, demosponges, and hexactinellids. Hexactinellida, in particular, are both abundant and diverse in Upper Cambrian carbonates. Comparison with spicule assemblages from Australia indicates that many of these taxa have long stratigraphic ranges, limiting their use in correlation. The morphological diversity of these spicules exceeds that known for living siliceous sponges, supporting the observation that during the Cambrian radiation, sponges, like other metazoans, evolved a variety of architectural forms not observed in later periods. Like conodonts, individual sponges can produce more than one spicule form; thus, an "apparatus genus" concept based on multiple co-occurring elements may eventually prove useful in the biostratigraphic and paleobiological interpretation of disarticulated sponge spicules. Four distinctive forms are recognized as new taxa: Australispongia sinensis new genus and species, Flosculus gracilis new genus and species, Pinnatispongia bengtsoni new genus and species, and Nabaviella paibiensis new species.  相似文献   

20.
Benthic-pelagic coupling and the role of bottom-up versus top-down processes are recognized as having a major impact on the structure of marine communities. While the roles of bottom-up processes are better appreciated they are still viewed as principally affecting the outcome of top-down processes. Sponges on coral reefs are important members of the benthic community and provide a critically important functional linkage between water-column productivity and the benthos. As active suspension feeders sponges utilize the abundant autotrophic and heterotrophic picoplankton in the water column. As a result sponges across the Caribbean basin exhibit a consistent and significant pattern of greater biomass, tube extension rate, and species numbers with increasing depth. Likewise, the abundance of their food supply also increases along a depth gradient. Using experimental manipulations it has recently been reported that predation is the primary determinant of sponge community structure. Here we provide data showing that the size and growth of the sponge Callyspongia vaginalis are significantly affected by food availability. Sponges increased in size and tube extension rate with increasing depth down to 46 m, while simultaneously exposed to the full range of potential spongivores at all depths. Additionally, we point out important flaws in the experimental design used to demonstrate the role of predation and suggest that a resolution of this important question will require well-controlled, multi-factorial experiments to examine the independent and interactive effects of predation and food abundance on the ecology of sponges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号