首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
温度对谷胱甘肽分批发酵的影响及动力学模型   总被引:16,自引:2,他引:16  
研究了24~32℃范围内产朊假丝酵母生产谷胱甘肽的分批发酵过程,发现较高温度对细胞生长有促进作用,而较低温度则更有利于谷胱甘肽产量的提高。应用改进的Logistic和LuedekingPiret方程分别对细胞生长动力学和谷胱甘肽合成动力学进行了模拟,得到不同温度下各种动力学参数。在此基础上,进一步研究了温度同细胞生长动力学参数之间的内在联系,得到谷胱甘肽分批发酵过程中细胞浓度的变化同温度以及底物浓度之间的一般关系式:dX-dt=[0.0224(T+1.7)]2X(1-X/Xmax)1+S{8.26×10.6×exp[-31477/R/(T+273)]}。验证实验结果表明,该模型具有很好的适用性。  相似文献   

2.
溶氧及pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响   总被引:16,自引:0,他引:16  
在7 L发酵罐中研究了溶氧和pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响。结果表明,当葡萄糖浓度为30 g/L且通气量控制在5 L/min时,搅拌转速达到300 r/min即可满足细胞生长和谷胱甘肽合成对溶解氧的需求。不同pH控制方式对谷胱甘肽分批发酵的影响有较大差异。不控制pH时,细胞干重和谷胱甘肽产量比控制pH为55的发酵分别低27%和95%,且有50%的谷胱甘肽向胞外渗漏。研究了将pH控制在4.0、4.5、5.0、5.5、6.0和6.5的谷胱甘肽分批发酵过程,发现在pH 5.5时谷胱甘肽总产量最高。用前期研究建立的动力学模型模拟了不同pH (4.0~6.5)下的分批发酵过程,并从动力学角度解释了pH对细胞生长和谷胱甘肽合成的影响。  相似文献   

3.
Aims: To investigate the effects of pH stress coupled with cysteine addition on glutathione (GSH) production in the treatment of high cell density culture of Candida utilis. Methods and Results: We have previously observed that most Candida utilis cells remained viable after being subjected to pH at 1·2 for 3 h and that some intracellular GSH leaked into the medium. A cysteine addition strategy was applied in fed‐batch production of GSH. A single cysteine addition resulted in higher GSH yield than two separate additions without pH stress. An increase in intracellular GSH content triggered inhibition of γ‐glutamylcysteine synthetase (γ‐GCS). A strategy that combines cysteine addition with low‐pH stress was developed to relieve the inhibition of γ‐GCS. Conclusion: Without pH stress, single shot and double shot cysteine addition yielded a total GSH of 1423 and 1325 mg l?1. In comparison, a low‐pH stress counterpart resulted in a total GSH of 1542 and 1730 mg l?1, respectively. With low‐pH stress, we observed GSH secretion into the medium at 673 and 558 mg l?1 and an increase in the γ‐GCS activity by 1·2‐ and 1·5‐fold, respectively. The specific GSH production yield increased from 1·76% to 1·91% (w/w) for single shot, and 1·64% to 2·14% for double shots. Significance and Impact of the Study: Low‐pH shift was applied to alleviate the feedback inhibition of intracellular GSH on γ‐GCS activity by secreting GSH into the medium. This strategy is coupled with cysteine addition to enhance GSH production in Candida utilis.  相似文献   

4.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

5.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

6.
In the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.  相似文献   

7.
氮源及碳氮比对产朊假丝酵母合成谷胱甘肽的影响   总被引:1,自引:0,他引:1  
研究了N源对产朊假丝酵母细胞生长和谷胱甘肽(GSH)合成的影响。在此基础上,分别以(NH4)2SO4和尿素作为单一N源,摇瓶条件下研究了不同C、N比对GSH发酵的影响。结果发现尿素有利于细胞生长,而(NH4)2SO4更有利于GSH的合成,并且酵母细胞在利用这2种N源合成GSH时,各自具有最佳的C、N比((NH4)2SO4为8.3 mol/mol,尿素为5.6 mol/mol)。最佳C、N比下的GSH分批发酵结果显示,尿素是更合适的N源,最终细胞干质量和GSH产量可以分别达到16.48 g/L和246.4 mg/L。最后分别采用发酵动力学模型和代谢网络分析对该结果产生的原因进行了定量解释。  相似文献   

8.
Aim:  This work is aimed at optimizing the production of a new heteropolysaccharide (HePS) of Leuconostoc sp. CFR-2181 by standardizing the fermentation conditions in a low cost semi-synthetic medium.
Methods and Results:  Both nutritional and cultural parameters, such as carbon source and its concentration, initial pH of the exopolysaccharide (EPS) medium, fermentation temperature and fermentation period were optimized. Fermentation of the EPS medium (pH 6·7), containing sucrose at 5% (w/v) and 5% (v/v) inoculum, at 25 ° C resulted in maximum production of HePS (18·38 g l−1) by the isolate in 4 h of fermentation.
Conclusions:  The isolate was found to produce good amount of HePS in just 4 h in a low cost semi-synthetic EPS medium.
Significance and Impact of the Study:  This is the first report on rapid production of HePS by any lactic culture, which can significantly reduce the cost of the EPS.  相似文献   

9.
AIMS: To investigate how carbon dioxide affects the acid resistance of Escherichia coli. METHODS AND RESULTS: Escherichia coli W3110 was grown in minimal EG medium at pH 7.5, and cells were adapted at pH 5.5 at 37 degrees C with and without supply of carbon dioxide and nitrogen gases. The number of colonies grown on LB medium was measured after cells were challenged in minimal EG medium of pH 2.5 at 37 degrees C under various conditions. When carbon dioxide was supplied at both the acid adaptation and challenge stages, 94% of cells survived after the acid challenge for 1 h, while the survival rates were 50 and 67% when nitrogen gas and glutamate were supplied respectively. After the acid challenge for 3 h, the survival rate observed with the carbon dioxide gas supply was again 2.5-fold higher than those with the nitrogen gas supply. CONCLUSION: Carbon dioxide was shown to participate in the maintenance of high viability under acidic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides useful information for research into bacterial pathogenesis, fermentation and food preservation.  相似文献   

10.
Aims: Three precursor amino acids and adenosine triphosphate ( ATP) are necessary for fermentative production of glutathione. In this study, our aims were to develop a strategy to enhance glutathione production by adding three precursor amino acids coupled with ATP in high cell density (HCD) cultivation of Candida utilis. Methods and Results: A high-glutathione yeast strain, C. utilis WSH 02-08, was used in this study. Whole fermentative process for glutathione production was divided into two phases of cell growth and glutathione synthesis. Cells concentration was increased by HCD cultivation. Meanwhile, intracellular glutathione content was enhanced by the addition of three precursor amino acids. Concentrations of three precursor amino acids added at stationary phase were optimized by response surface methodology. Moreover, the addition of ATP 15 h after the addition of the three amino acids can further enhance glutathione production. Based on aforementioned phenomenon, a strategy of adding three precursor amino acids coupled with ATP was developed to enhance glutathione production. Conclusion: Without the addition of three precursor amino acids and the ATP, a total glutathione of 1123 mg l−1 was achieved after 60-h cultivation. In comparison, addition of three precursor amino acid counterparts resulted in a total glutathione of 1841 mg l−1. Moreover, by adding amino acids combined with ATP, a total glutathione of 2043 mg l−1 was achieved after 72-h cultivation, increased by 81·9% and 11%, respectively, as compared with the control and the one without ATP addition. Significance and Impact of the Study: This is the first report on investigating changes of the intracellular three precursor amino acids and ATP, and γ-glutamylcysteine synthase activity in HCD cultivation of C. utilis for glutathione production. A strategy of combining addition of three precursor amino acids with ATP was developed to enhance glutathione production in C. utilis.  相似文献   

11.
Liang G  Liao X  Du G  Chen J 《Bioresource technology》2009,100(1):350-355
Effect of H(2)O(2)-induced oxidative stress on glutathione (GSH) production in Candida utilis was investigated. Based on the results that H(2)O(2) can effectively stimulate GSH accumulation but inhibit cell growth simultaneously, a novel strategy of multiple H(2)O(2) stresses with different concentrations (1 mmol/L at 4h, 2 mmol/L at 8h, and 4 mmol/L at 12h) were developed to maximize GSH production. As a result, a maximal GSH yield of 218 mg/L was achieved and a corresponding intracellular GSH content was 2.15%, which were 54.6% and 58.1% higher than the control. By further applying this strategy to 7 L fermentor, GSH yield and intracellular GSH content were 328 mg/L and 2.30%. Moreover, increased activities of catalase (CAT) and GSH reductase (GR) indicated that GSH and CAT were directly involved in protecting cell against oxidative stress by H(2)O(2).  相似文献   

12.
一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力   总被引:11,自引:0,他引:11  
研究了一株嗜热子囊菌产过氧化氢酶的摇瓶发酵条件,并对其在纺织工业中的应用潜力进行了评价。以20 g/L糊精和1%(V/V)乙醇为混合碳源时,过氧化氢酶酶活达到1594 u/Ml,比以糊精和乙醇单独为碳源时过氧化氢酶的活力之和还高23%。改变培养基的初始Ph、提高发酵液中的溶氧水平及添加外源过氧化氢,过氧化氢酶的产量进一步提高到2762 u/Ml,比优化前提高了5.8倍。将嗜热子囊菌的过氧化氢酶同来源于牛肝、黑曲霉的过氧化氢酶进行了热(70℃, 80℃, 90℃)、碱(Ph 9.0, Ph 10.0, Ph 11.0)稳定性的比较。结果显示,产自嗜热子囊菌的过氧化氢酶对高温和强碱性的耐受性能明显优于其它来源的酶,在纺织染整工艺中具有良好的应用潜力。  相似文献   

13.
摇瓶条件下考察不同的盐(NaCl,Na2SO4,KCl,K2SO4)胁迫对产朊假丝酵母发酵联产S-腺苷蛋氨酸(SAM)和谷胱甘肽(GSH)的影响。结果发现适当浓度的Na+和K+对SAM和GSH合成具有部分促进作用,而Cl-的作用则相反。以Na2SO4为代表,考察分批发酵条件下盐胁迫的作用,结果表明:在酵母细胞生长后期(15 h)添加10 g/L Na2SO4,SAM、GSH以及二者的最大联产量为252.5、285.9和521.9 mg/L,比对照分别提高了8.8%、22.6%和13.9%。最后分别从能量代谢和发酵动力学角度对分批发酵的结果进行了分析。  相似文献   

14.
A mutant of Thermobifida fusca ATCC 27730 was used for cutinase production. Acetate was the most suitable carbon source for cell growth and cutinase production compared with others. The pH was one of the most important factors affecting cutinase yield and productivity. Batch cutinase fermentations by mutant Thermobifida fusca WSH04 at various pH values ranging from 7.0 to 7.9 were studied. Based on the effects of different pH values on the specific cell growth rate and specific cutinase formation rate, a two-stage pH control strategy was developed, in which the pH was set at 7.3 for the first 20 h, and switched to 7.6 afterwards. By applying this two-stage pH control strategy for cutinase fermentation, the maximal cutinase activity reached 19.8 U/mL.  相似文献   

15.
AIMS: To study the effect of different fermentation conditions and to model the effect of temperature and pH on different biokinetic parameters of bacterial growth and exopolysaccharides (EPS) production of Streptococcus thermophilus ST 111 in milk-based medium. METHODS AND RESULTS: The influence of temperature and pH was studied through fermentation and modelling. Fermentations under non-pH controlled conditions with S. thermophilus ST 111 indicated that the EPS production was low in milk medium, even if additional nitrogen sources were supplemented. Under pH-controlled conditions, addition of whey protein hydrolysate to the milk medium resulted in a fivefold increase of the EPS production. This medium did not contain polysaccharides interfering with EPS isolation. Primary and secondary modelling of different fermentations revealed an optimum temperature and pH of 40 degrees C and constant pH 6.2, respectively, for growth in milk medium supplemented with whey protein hydrolysate. Maximum EPS production was observed in the range of 32-42 degrees C and constant pH 5.5-6.6. Whereas growth and maximum EPS production were clearly influenced by temperature and pH, the specific EPS production was only affected by stress conditions (T = 49 degrees C). CONCLUSIONS: Addition of whey protein hydrolysate to milk medium resulted in an increased growth and EPS production of S. thermophilus ST 111 under pH-controlled conditions. A modelling approach allowed studying the influence of temperature and pH on the kinetics of both growth and EPS production. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of an appropriate milk-based medium and a combined model of temperature and pH can be of practical importance for the production of yoghurt or other fermented milks as well as for process optimization of the large-scale production of starter strains to be used for their EPS production.  相似文献   

16.
混合菌群发酵秸秆可有效提高秸秆纤维的降解率及菌体蛋白的转化率,对拓广蛋白饲料来源、减少环境污染起到积极的作用。本研究以小麦秸秆为原料,在纤维素酶水解预处理的基础上,以米曲霉作为先导菌,进一步分解残留的粗纤维,为后期发酵提供充足的碳源。根据不同微生物的代谢特征和协同机理,试验确定了发酵阶段混合菌群的组成为:米曲霉、产朊假丝酵母和枯草芽胞杆菌;接种顺序为:先接种米曲霉,再接种产朊假丝酵母,最后接种枯草芽胞杆菌。正交试验表明,影响发酵主要因素的主次顺序为:秸秆与麸皮配比>接种比例>发酵时间>接种量>发酵温度;发酵的最适条件为:米曲霉的接种量2.5%,发酵12h后接入5%的产朊假丝酵母,继续发酵8h后接入2.5%的枯草芽胞杆菌,发酵温度为28℃,秸秆与麸皮的配比为4∶1,尿素添加量为1.2%;结合动力学分析,将混合菌群的发酵时间优化为35h,发酵产物中粗蛋白含量由原来的5.47%提高到25%左右。对最适发酵条件下的动力学过程进行了探讨,建立了以Logistic方程为基础的数学模型和动力学方程。本研究表明,混合菌群发酵秸秆提高了发酵产物中的粗蛋白含量。动力学分析对于了解发酵机理、掌握整个发酵过程中混合菌群生长的动态变化、优化发酵工艺具有重要的指导意义。  相似文献   

17.
A mesophilic yeast, Candida utilis, and a psychrophilic yeast, Leucosporidium stokesii, were subjected to freeze-thaw cycling over the range 25 to -60 C. Viability after freeze-thaw stress was directly correlated with the rate of cooling and the physiological age of the cultures. Rates of glucose fermentation and oxidation could be directly correlated with viability. The optimal cooling rate for both yeast strains was 4.5 to 6.5 C/min; however, their levels of survival obtained at this optimal cooling rate varied considerably. In addition, the psychrophile was less resistant to freeze-thaw stress than was the mesophile.  相似文献   

18.
Stress tolerance of yeast Saccharomyces cerevisiae during ethanolic fermentation is poorly understood due to the lack of genetic screens and conventional plate assays for studying this phenotype. We screened a genomic expression library of yeast to identify gene(s) that, upon overexpression, would prolong the survival of yeast cells during fermentation, with the view to understand the stress response better and to use the identified gene(s) in strain improvement. The yeast RPI1 (Ras-cAMP pathway inhibitor 1) gene was identified in such a screen performed at 38 °C; introducing an additional copy of RPI1 with its native promoter helped the cells to retain their viability by over 50-fold better than the wild type (WT) parent strain, after 36 h of fermentation at 38 °C. Disruption of RPI1 resulted in a drastic reduction in viability during fermentation, but not during normal growth, further confirming the role of this gene in fermentation stress tolerance. This gene seems to improve viability by fortifying the yeast cell wall, because RPI1 overexpression strain is highly resistant to cell lytic enzyme zymolyase, compared with the WT strain. As the RPI1 overexpression strain substantially retains cell viability at the end of fermentation, the cells can be reused in the subsequent round of fermentation, which is likely to facilitate economical production of ethanol.  相似文献   

19.
Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40 degrees C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35 degrees C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38 degrees C.  相似文献   

20.
Effect of pH on the batch fermentation of pullulan from sucrose medium   总被引:3,自引:0,他引:3  
Two strains of the yeast-like fungus Aureobasidium pullulans 2552 and 140B have been used for the fermentative production of the polysaccharide pullulan from a sucrose synthetic medium. In the batch fermentation, either in Erlenmeyers or in the fermentor, the pH of the culture medium was decreased rapidly from its initial pH value of 5.5 to the self-stabilized final value of 2.5 within 24 h. Experiments on the effect of initial pH on the fermentation revealed that at very low initial pH values, such as at pH 2, the polysaccharide production was in-significant. However, the biomass concentration obtained was very high at this very low initial pH value. This interesting phenomenon was served as the basic principle for the development of the bistaged pH fermentation process for the production of pullulan. In this process the first stage of fermentation was conducted at the very acidic pH for the best production of biomass. When the biomass concentration reached its maximum value, the second stage of fermentation was initiated by adjusting the medium pH to a higher value for promoting the synthesis of the polysaccharide. Experiments conducted in Erlenmeyers and in the fermentor confirmed this concept. The bistaged pH process enhanced the polysaccharide concentration in the medium, influenced the rheological properties of the fermentation broth, and has a potential of operation under nonsterile and nonaseptic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号