首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ganesh N  Muniyappa K 《Proteins》2003,53(1):6-17
In eubacteria, RecA proteins belong to a large superfamily of evolutionarily conserved, filament-forming, functional homologs of DNA strand exchange proteins. Here, we report the functional characterization of Mycobacterium smegmatis (Ms) and Mycobacterium tuberculosis (Mt) RecA proteins. Although in some respects Ms and Mt RecA proteins are structural and functional homologs of Escherichia coli (Ec) RecA, there are significant differences as well. The single-stranded DNA-binding property of RecA proteins was analyzed by electrophoretic mobility shift assays. We observed that Ms or Mt RecA proteins bound single-stranded DNA in a manner distinct from that of Ec RecA: The former two were able to form protein-DNA complexes in the presence of high salt. Further experiments indicated that Ms or Mt RecA proteins catalyzed adenosine triphosphate hydrolysis at approximately comparable rates across a wide range of pHs. Significantly, DNA strand invasion promoted by Ms or Mt RecA proteins displayed similar kinetics but distinctly different pH profiles. In contrast to MtRecA, MsRecA by itself was unable to form joint molecules across a wide range of pHs. However, regardless of the order in which SSB was added, it was able to stimulate MsRecA to form joint molecules within a narrow pH range, indicating that SSB is a required accessory factor. Together, these results provide a source of sharp contrast between EcRecA and mycobacterial RecAs on the one hand and Mt and Ms RecA proteins on the other.  相似文献   

2.
Vaze MB  Muniyappa K 《Biochemistry》1999,38(10):3175-3186
To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.  相似文献   

3.
Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein.  相似文献   

4.
The crystal structures of Mycobacterium smegmatis RecA (RecA(Ms)) and its complexes with ADP, ATPgammaS, and dATP show that RecA(Ms) has an expanded binding site like that in Mycobacterium tuberculosis RecA, although there are small differences between the proteins in their modes of nucleotide binding. Nucleotide binding is invariably accompanied by the movement of Gln 196, which appears to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding loops. These observations provide a framework for exploring the known properties of the RecA proteins.  相似文献   

5.
The RecA proteins from Mycobacterium tuberculosis and Mycobacterium leprae contain inteins. In contrast to the M. tuberculosis RecA, the M. leprae RecA is not spliced in Escherichia coli. We demonstrate here that M. leprae RecA is functionally spliced in Mycobacterium smegmatis and produces resistance toward DNA-damaging agents and homologous recombination.  相似文献   

6.
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that are similar to those formed by the RecA(Ec). The RecA(Dr) protein hydrolyzes ATP and dATP and promotes DNA strand exchange reactions. DNA strand exchange is greatly facilitated by the E. coli SSB protein. As is the case with the E. coli RecA protein, the use of dATP as a cofactor permits more facile displacement of bound SSB protein from ssDNA. However, there are important differences as well. The RecA(Dr) protein promotes ATP- and dATP-dependent reactions with distinctly different pH profiles. Although dATP is hydrolyzed at approximately the same rate at pHs 7.5 and 8.1, dATP supports an efficient DNA strand exchange only at pH 8.1. At both pHs, ATP supports efficient DNA strand exchange through heterologous insertions but dATP does not. Thus, dATP enhances the binding of RecA(Dr) protein to ssDNA and the displacement of ssDNA binding protein, but the hydrolysis of dATP is poorly coupled to DNA strand exchange. The RecA(Dr) protein thus may offer new insights into the role of ATP hydrolysis in the DNA strand exchange reactions promoted by the bacterial RecA proteins. In addition, the RecA(Dr) protein binds much better to duplex DNA than the RecA(Ec) protein, binding preferentially to double-stranded DNA (dsDNA) even when ssDNA is present in the solutions. This may be of significance in the pathways for dsDNA break repair in Deinococcus.  相似文献   

7.
Bacillus subtilis RecA preferentially hydrolyzes dATP over ATP and supports an efficient DNA strand exchange reaction in the presence of dATP when compared to ATP. Saturating amounts of SsbA, independently of the order of addition, reduce the single-stranded (ss) DNA-dependent dATPase activity of RecA, and block the ATPase activity. SsbA added prior to RecA slightly stimulates the dATP-dependent DNA strand exchange activity, whereas added after RecA greatly enhances the extent of strand exchange. In the presence of ATP, 10 times more RecA is required to achieve a comparable level of strand exchange than in the presence of dATP. We propose that dATP binding and hydrolysis as well as SsbA provide different levels of regulation of the dynamic RecA nucleoprotein filament.  相似文献   

8.
In the accompanying paper, RecA142 protein was found to be completely defective in DNA heteroduplex formation. Here, we show that RecA142 protein not only is defective in this activity but also is inhibitory for certain activities of wild-type RecA protein. Under appropriate conditions, RecA142 protein substantially inhibits the DNA strand exchange reaction catalyzed by wild-type RecA protein; at equimolar concentrations of each protein, formation of full-length gapped duplex DNA product molecules is less than 7% of the amount produced by wild-type protein alone. Inhibition by RecA142 protein is also evident in S1 nuclease assays of DNA heteroduplex formation, although the extent of inhibition is less than is observed for the complete DNA strand exchange process; at equimolar concentrations of wild-type and mutant proteins, the extent of DNA heteroduplex formation is 36% of the wild-type protein level. This difference implies that RecA142 protein prevents, at minimum, the branch migration normally observed during DNA strand exchange. RecA142 protein does not inhibit either the single-strand (ss) DNA-dependent ATPase activity or the coaggregation activities of wild-type RecA protein. This suggests that these reactions are not responsible for the inhibition of wild-type protein DNA strand exchange activity by RecA142 protein. However, under conditions where RecA142 protein inhibits DNA strand exchange activity, RecA142 protein renders the M13 ssDNA-dependent ATPase activity of wild-type protein sensitive to inhibition by single-strand DNA-binding protein, and it inhibits the double-strand DNA-dependent ATPase activity of wild-type RecA protein. These results imply that these two activities are important components of the overall DNA strand exchange process. These experiments also demonstrate the applicability of using defective mutant RecA proteins as specific codominant inhibitors of wild-type protein activities in vitro and should be of general utility for mechanistic analysis of RecA protein function both in vitro and in vivo.  相似文献   

9.
The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted infection gonorrhea. The recA gene from N. gonorrhoeae is essential for DNA repair, natural DNA transformation, and pilin antigenic variation, all processes that are important for the pathogenesis and persistence of N. gonorrhoeae in the human population. To understand the biochemical features of N. gonorrhoeae RecA (RecA(Ng)), we overexpressed and purified the RecA(Ng) and SSB(Ng) proteins and compared their activities to those of the well-characterized E. coli RecA and SSB proteins in vitro. We observed that RecA(Ng) promoted more strand exchange at early time points than RecA(Ec) through DNA homologous substrates, and exhibited the highest ATPase activity of any RecA protein characterized to date. Further analysis of this robust ATPase activity revealed that RecA(Ng) is more efficient at displacing SSB from ssDNA and that RecA(Ng) shows higher ATPase activity during strand exchange than RecA(Ec). Using substrates created to mimic the cellular processes of DNA transformation and pilin antigenic variation we observed that RecA(Ec) catalyzed more strand exchange through a 100 bp heterologous insert, but that RecA(Ng) catalyzed more strand exchange through regions of microheterology. Together, these data suggest that the processes of ATP hydrolysis and DNA strand exchange may be coupled differently in RecA(Ng) than in RecA(Ec). This difference may explain the unusually high ATPase activity observed for RecA(Ng) with the strand exchange activity between RecA(Ng) and RecA(Ec) being more similar.  相似文献   

10.
The members of the RecX family of proteins have a unique capacity to regulate the catalytic activities of RecA/Rad51 proteins in both prokaryotic and eukaryotic organisms. However, our understanding of the functional roles of RecX in pathogenic and non-pathogenic mycobacteria has been limited by insufficient knowledge of the molecular mechanisms of its activity and regulation. Moreover, the significance of a unique 14 amino acid N-terminal extension in Mycobacterium smegmatis RecX (MsRecX) to its function remains unknown. Here, we advance our understanding of the antagonistic roles of mycobacterial RecX proteins and the functional significance of the extended N-terminus of MsRecX. The full-length MsRecX acts as an antagonist of RecA, negatively regulating RecA promoted functions, including DNA strand exchange, LexA cleavage and ATP hydrolysis, but not binding of ATP. The N-terminally truncated MsRecX variants retain the RecA inhibitory activity, albeit with lower efficiencies compared to the full-length protein. Perhaps most importantly, direct visualization of RecA nucleoprotein filaments, which had been incubated with RecX proteins, showed that they promote disassembly of nucleoprotein filaments primarily within the filaments. In addition, interaction of RecX proteins with the RecA nucleoprotein filaments results in the formation of stiff and irregularly shaped nucleoprotein filaments. Thus, these findings add an additional mechanism by which RecX disassembles RecA nucleoprotein filaments. Overall, this study provides strong evidence for the notion that the N-terminal 14 amino acid region of MsRecX plays an important role in the negative regulation of RecA functions and new insights into the molecular mechanism underlying RecX function.  相似文献   

11.
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.  相似文献   

12.
Two mutant Escherichia coli RecA proteins were prepared in which the ATP active site residue, Ser240, was replaced with asparagine and lysine (these amino acids are found in the corresponding positions in other bacterial RecA proteins). The S240N mutation had no discernible effect on the ATP-dependent activities of the RecA protein, indicating that serine and asparagine are functionally interchangeable at position 240. The S240K mutation, in contrast, essentially eliminated the ability of the RecA protein to utilize ATP as a nucleotide cofactor. The [S240K]RecA protein was able to catalyze the hydrolysis of dATP, however, suggesting that the absence of the 2'-hydroxyl group reduced an inhibitory interaction with the Lys240 side chain. Interestingly, the [S240K]RecA protein was able to promote an efficient LexA cleavage reaction but exhibited no strand exchange activity when dATP was provided as the nucleotide cofactor. This apparent separation of function may be attributable to the elevated S(0.5) value for dATP for the [S240K]RecA protein (490 μM, compared to 20-30 μM for the wild type and [S240N]RecA proteins), and may reflect a differential dependence of the LexA co-protease and DNA strand exchange activities on the nucleotide cofactor-mediated stabilization of the functionally-active state of the RecA-ssDNA complex.  相似文献   

13.
In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.  相似文献   

14.
Sequencing of the complete genome of Mycobacterium tuberculosis, combined with the rapidly increasing need to improve tuberculosis management through better drugs and vaccines, has initiated extensive research on several key proteins from the pathogen. RecA, a ubiquitous multifunctional protein, is a key component of the processes of homologous genetic recombination and DNA repair. Structural knowledge of MtRecA is imperative for a full understanding of both these activities and any ensuing application. The crystal structure of MtRecA, presented here, has six molecules in the unit cell forming a 61 helical filament with a deep groove capable of binding DNA. The observed weakening in the higher order aggregation of filaments into bundles may have implications for recombination in mycobacteria. The structure of the complex reveals the atomic interactions of ADP–AlF4, an ATP analogue, with the P-loop-containing binding pocket. The structures explain reduced levels of interactions of MtRecA with ATP, despite sharing the same fold, topology and high sequence similarity with EcRecA. The formation of a helical filament with a deep groove appears to be an inherent property of MtRecA. The histidine in loop L1 appears to be positioned appropriately for DNA interaction.  相似文献   

15.
A recA deletion mutant of Mycobacterium smegmatis has been isolated by homologous recombination using a sacB counterselection strategy. Deletion of the recA gene from the chromosome was demonstrated by Southern hybridizations and by polymerase chain reaction (PCR). Western analysis using anti-RecA antibodies confirmed that the RecA protein was not made by the mutant strain. The recA deletion strain exhibited enhanced sensitivity to UV irradiation and failed to undergo homologous recombination. The results obtained from the recombination assays suggest that in wild-type M. smegmatis the majority of colonies arise from single cross-over homologous recombination events with only a very minor contribution from random integrations. The deficiencies in UV survival and recombination were complemented by introduction of the cloned M. smegmatis recA gene. Overexpression of RecA was found to be toxic in the absence of recX , which is found downstream of and co-transcribed with recA and is thus also affected by the deletion of recA . The M. smegmatis recA deletion strain was also complemented by the M. tuberculosis recA gene with or without its intein; most importantly, the frequency of double cross-over homologous recombination events was identical regardless of whether the M. tuberculosis recA gene contained or lacked the intein. Thus, the low frequency of homologous recombination observed in M. tuberculosis is not due to the presence of an intein-coding sequence in its recA gene per se .  相似文献   

16.
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.  相似文献   

17.
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. However, RecU inhibited the RecA-mediated three-strand exchange reaction and ssDNA-dependent dATP or rATP hydrolysis. The addition of an SSB protein did not reverse the negative effect exerted by RecU on RecA function. Annealing of circular ssDNA and homologous linear 3′-tailed double-stranded DNA by RecU was not affected by the addition of RecA both in the presence and in the absence of SSB. We propose that RecU modulates RecA activities by promoting RecA-catalyzed strand invasion and inhibiting RecA-mediated branch migration, by preventing RecA filament disassembly, and suggest a potential mechanism for the control of resolvasome assembly.  相似文献   

18.
19.
The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of strand exchange is greatly enhanced by dsDNA-ssDNA junctions at the ends of DNA gaps. This same trend is seen with the EcRecA protein. The results lead to an expansion of published hypotheses for the pathway for RecA-mediated DNA pairing, in which the slow first order step (observed in several studies) involves a structural transition to a state we designate P. The P state is identical to the state found when RecA is bound to double-stranded (ds) DNA. The structural state present when the RecA protein is bound to single-stranded (ss) DNA is designated A. The DNA pairing model in turn facilitates an articulation of three additional conclusions arising from the present work. 1) When a segment of a RecA filament bound to ssDNA is forced into the P state (as RecA bound to the ssDNA immediately adjacent to dsDNA-ssDNA junction), the segment becomes "pairing enhanced." 2) The unusual DNA pairing properties of the D. radiodurans RecA protein can be explained by postulating this protein has a more stringent requirement to initiate DNA strand exchange from the P state. 3) RecA filaments bound to dsDNA (P state) have directly observable structural changes relative to RecA filaments bound to ssDNA (A state), involving the C-terminal domain.  相似文献   

20.
The bacterial RecA protein and the homologous Rad51 protein in eukaryotes both bind to single-stranded DNA (ssDNA), align it with a homologous duplex, and promote an extensive strand exchange between them. Both reactions have properties, including a tolerance of base analog substitutions that tend to eliminate major groove hydrogen bonding potential, that suggest a common molecular process underlies the DNA strand exchange promoted by RecA and Rad51. However, optimal conditions for the DNA pairing and DNA strand exchange reactions promoted by the RecA and Rad51 proteins in vitro are substantially different. When conditions are optimized independently for both proteins, RecA promotes DNA pairing reactions with short oligonucleotides at a faster rate than Rad51. For both proteins, conditions that improve DNA pairing can inhibit extensive DNA strand exchange reactions in the absence of ATP hydrolysis. Extensive strand exchange requires a spooling of duplex DNA into a recombinase-ssDNA complex, a process that can be halted by any interaction elsewhere on the same duplex that restricts free rotation of the duplex and/or complex, I.e. the reaction can get stuck. Optimization of an extensive DNA strand exchange without ATP hydrolysis requires conditions that decrease nonproductive interactions of recombinase-ssDNA complexes with the duplex DNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号