首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.  相似文献   

2.
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.  相似文献   

3.
Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole hinge 1 domain and the C-terminal part of the neck helix moved microtubules toward the center of the catchin filaments significantly, but only slightly, faster than in the opposite direction, although the movements in both directions were slower than those of the KHC430Cat construct. The results suggest that kinesin has substantial mechanical flexibility within the motor domain, possibly within the neck linker, enabling its interaction with microtubules having any orientation.  相似文献   

4.
The role of the cytoskeleton in the regulation of chloroplast motility and positioning has been investigated by studying: (1) structural relationship of actin microfilaments, microtubules, and chloroplasts in cryofixed and freeze-substituted leaf cells of Arabidopsis; and (2) the effects of anti-actin (Latrunculin B; LAT-B) and anti-microtubule (Oryzalin) drugs on intracellular distribution of chloroplasts. Immunolabeling of leaf cells with two plant-actin specific antibodies, which react equivalently with all the expressed Arabidopsis actins, revealed two arrangements of actin microfilaments: longitudinal arrays of thick actin bundles and randomly oriented thin actin filaments that extended from the bundles. Chloroplasts were either aligned along the actin bundles or closely associated with the fine filaments. Baskets of actin microfilaments were also observed around the chloroplasts. The leaf cells labeled with an anti-tubulin antibody showed dense transverse arrays of cortical microtubules that exhibited no apparent association with chloroplasts. The application of LAT-B severely disrupted actin filaments and their association with chloroplasts. In addition, LAT-B induced aberrant aggregation of chloroplasts in the mesophyll and bundle sheath cells. Double labeling of LAT-B treated cells with anti-actin and anti-tubulin antibodies revealed that the microtubules in these cells were unaffected. Moreover, depolymerization of microtubules with Oryzalin did not affect the distribution of chloroplasts. These results provide evidence for the involvement of actin, but not tubulin, in the movement and positioning of chloroplasts in leaf cells. We propose that using motor molecules, some chloroplasts migrate along the actin cables directly, while others are pulled along the cables by the fine actin filaments. The baskets of microfilaments may anchor the chloroplasts during streaming and allow control over proper three-dimensional orientation to light.  相似文献   

5.
Neurodegenerative diseases may result in part from defects in motor‐driven vesicle transport in neuronal cells. Myosin‐V, an actin‐based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin‐V interacts with the microtubule‐based motor, kinesin, to form a ‘hetero‐motor’ complex on vesicles. The complex of these two motors, one microtubule‐based and the other actin‐based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin‐V to kinesin and to neuronal vesicles, we used a GST‐tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin‐V presumably by binding to vesicles and competing away the native myosin‐V motors. The GST‐MyoV‐tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin‐V. These data show that the headless myosin‐V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin‐V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

6.
Guidance molecules steer growth cones to their targets by attracting or repelling them. Turning in a new direction requires remodeling of the growth cone and bending of the axon. This depends upon reorganization of actin filaments and microtubules, which are the primary cytoskeletal components of growth cones. This article discusses how these cytoskeletal components induce turning. The importance of each component as well as how interactions between them result in axon guidance is discussed. Current evidence shows that microtubules are influenced by both the organization and dynamics of actin filaments in the peripheral domain of growth cones. Cytoskeletal models for repulsive and attractive turning are presented. Molecular candidates that may link actin filaments with microtubules are suggested and potential signal transduction pathways that allow these cytoskeletal components to affect each other are discussed.  相似文献   

7.
Walking with myosin V   总被引:5,自引:0,他引:5  
The cytoplasm of cells is teaming with vesicles and other cargo that are moving along tracks of microtubules or actin filaments, powered by myosins, kinesins and dyneins. Myosin V has been implicated in several types of intracellular transport. The mechanism by which myosin V moves processively along actin filaments has been the subject of many biophysical and biochemical studies and a consensus is starting to emerge about how this minute molecular motor operates.  相似文献   

8.
One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

10.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

11.
Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.  相似文献   

12.
Allingham JS  Sproul LR  Rayment I  Gilbert SP 《Cell》2007,128(6):1161-1172
Conventional kinesin and class V and VI myosins coordinate the mechanochemical cycles of their motor domains for processive movement of cargo along microtubules or actin filaments. It is widely accepted that this coordination is achieved by allosteric communication or mechanical strain between the motor domains, which controls the nucleotide state and interaction with microtubules or actin. However, questions remain about the interplay between the strain and the nucleotide state. We present an analysis of Saccharomyces cerevisiae Kar3/Vik1, a heterodimeric C-terminal Kinesin-14 containing catalytic Kar3 and the nonmotor protein Vik1. The X-ray crystal structure of Vik1 exhibits a similar fold to the kinesin and myosin catalytic head, but lacks an ATP binding site. Vik1 binds more tightly to microtubules than Kar3 and facilitates cooperative microtubule decoration by Kar3/Vik1 heterodimers, and yet allows motility. These results demand communication between Vik1 and Kar3 via a mechanism that coordinates their interactions with microtubules.  相似文献   

13.
One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks of actin filaments and microtubules coexist and motors for both types of filament are implicated.  相似文献   

14.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

15.
Lipotubuloids in ovary epidermis of Ornithogalum umbellatum which are a domain of cytoplasm containing a lot of lipid bodies, microtubules and actin filaments, ribosomes, endoplasmic reticulum as well as scarce mitochondria, microbodies, dictyosomes, autolytic vacuoles, exhibit progressive-rotary motion. The immunogold method demonstrated that microtubules and actin filaments of lipotubuloids might be connected with one another by myosin and kinesin. It was supposed that collaboration of motor proteins with actin filaments and microtubules makes autonomic high peripheral speed rotary motion of lipotubuloids in epidermis cells possible. Moreover, myosin was also detected in Golgi bodies in lipotubuloid. In lipotubuloids, the immunogold method demonstrated immunosignals after the use of an antibody to dynein light chains but spectroscopy mass analysis showed that in O. umbellatum epidermis lacked dynein heavy chains.  相似文献   

16.
Molecular motor proteins, fueled by energy from ATP hydrolysis, move along actin filaments or microtubules, performing work in the cell. The kinesin microtubule motors transport vesicles or organelles, assemble bipolar spindles or depolymerize microtubules, functioning in basic cellular processes. The mechanism by which motor proteins convert energy from ATP hydrolysis into work is likely to differ in basic ways from man-made machines. Several mechanical elements of the kinesin motors have now been tentatively identified, permitting researchers to begin to decipher the mechanism of motor function. The force-producing conformational changes of the motor and the means by which they are amplified are probably different for the plus- and minus-end kinesin motors.  相似文献   

17.
Neurodegenerative diseases may result in part from defects in motor-driven vesicle transport in neuronal cells. Myosin-V, an actin-based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin-V interacts with the microtubule-based motor, kinesin, to form a 'hetero-motor' complex on vesicles. The complex of these two motors, one microtubule-based and the other actin-based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin-V to kinesin and to neuronal vesicles, we used a GST-tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin-V presumably by binding to vesicles and competing away the native myosin-V motors. The GST-MyoV-tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin-V. These data show that the headless myosin-V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin-V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

18.
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Summary Distribution of microtubules and other cytoskeletal filaments in growing skeletal muscle cells (myotubes) was studied in vitro by fluorescence microscopy using fluorescin-labeled antibodies and phalloidin, a specific antiactin drug. In the distal elongating tips of myotubes, microtubules were the major cytoskeletal elements; actin and intermediate filaments were much less abundant. On the other hand, colcemidand nocodozole-treatments caused disruption of microtubules and also prompt retraction of growth tips to form myosacs, a type of deformed myotube. Actin filaments remained unaffected during the retraction. The difference in the distribution of the 3 cytoskeletal filaments in the region of growth tips was most remarkable in the case of those myotubes in the process of recovery from myosacs. In an early phase of recovery, the cellular processes extending from myosacs were enriched with both microtubules and intermediate filaments, but not with actin filaments. Later, when the processes became further developed, intermediate filaments were scarce at the extreme ends. Fluorescein-labeled actin introduced by a micro-injection method was minimally incorporated into filaments in the cellular processes. We conclude that microtubules make up the cytoskeletal element which is most responsible for elongation or spreading of growth tips of myotubes in vitro.  相似文献   

20.
The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号