首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High density lipoprotein cholesterol (HDL-C) is inversely associated with coronary heart disease and has a genetic component; however, linkage to HDL-C is not conclusive. Subfractions of HDL, such as HDL(3)-C, may be better phenotypes for linkage studies. Using HDL(3)-C levels measured on 907 Framingham Heart Study subjects from 330 families around 1987, we conducted a genome-wide variance components linkage analysis with 401 microsatellite markers spaced approximately 10 centimorgan (cM) apart. Nine candidate genes were identified and annotated using a bioinformatics approach in the region of the highest linkage peak. Twenty-eight single nucleotide polymorphisms (SNPs) were selected from these candidate genes, and linkage and family-based association fine mapping were conducted using these SNPs. The highest multipoint log-of-the-odds (LOD) score from the initial linkage analysis was 3.7 at 133 cM on chromosome 6. Linkage analyses with additional SNPs yielded the highest LOD score of 4.0 at 129 cM on chromosome 6. Family-based association analysis revealed that SNP rs2257104 in PLAGL1 at approximately 143 cM was associated with multivariable adjusted HDL(3) (P = 0.03). Further study of the linkage region and exploration of other variants in PLAGL1 are warranted to define the potential functional variants of HDL-C metabolism.  相似文献   

2.
Plasma non-HDL and HDL cholesterol levels are predictors of cardiovascular diseases. We carried out a genetic cross between two laboratory inbred mouse strains, C57BL/6J and CASA/Rk, to detect loci that control the plasma levels of non-HDL and HDL cholesterol. With regard to non-HDL cholesterol, chow-fed CASA/Rk males and females had 87% and 25% higher levels, respectively, than did C57BL/6Js. The levels of non-HDL cholesterol in F1s were similar to C57BL/6J. There was no strain difference in HDL cholesterol levels. An intercross between F1s was performed, and plasma non-HDL and HDL cholesterol was measured in 185 male and 184 female mice. In both male and female F2 mice, plasma non-HDL and HDL cholesterol levels were unimodally distributed; however, in both cases the values for females were significantly lower than for males. Therefore, linkage analysis was performed with sex as a covariate. Significant linkage for non-HDL cholesterol was found on chromosome 6 at 49 cM (LOD 5.17), chromosome 4 at 55 cM (LOD 4.22), and chromosome 8 at 7 cM (LOD 3.68). Significant linkage for HDL cholesterol was found on chromosome 9 at 14 cM (LOD 7.52) and chromosome 8 at 76 cM (LOD 4.69). A significant epistatic interaction involving loci on chromosomes 2 and 5 was also observed for non-HDL cholesterol. In summary, linkage analysis in these cross-identified novel loci confirmed previously identified loci in control of plasma non-HDL and HDL cholesterol and disclosed a novel interaction in controlling non-HDL cholesterol levels in the mouse.  相似文献   

3.
Recent reports implicate chromosomal regions linked to inter-individual variation in plasma triglycerides. We conducted genome-wide scans to replicate these linkages and/or identify other loci influencing plasma triglycerides in the NHLBI Family Heart Study (FHS). Data were obtained for 501 three-generational families. Genotyping was done by the Utah Molecular Genetics Laboratory and NHLBI Mammalian Genotyping Service; markers from both were placed on one genetic map. Analysis was done using multipoint variance components linkage. Fasting plasma triglycerides were log-transformed and age-, sex-, and field center-adjusted; suggestive linkage evidence was found on chromosome 8 (LOD=2.80 at 89 cM, marker D8S1141). Further adjustment for waist girth, BMI, diabetes, hypertension, and lipid-lowering drugs suggested linkage regions on chromosomes 6 (LOD=2.29 at 79 cM, marker D6S295) and 15 (LOD=1.85 at 43 cM, marker D15S659). Since HDL is correlated with triglycerides and because it was linked to this region on chromosome 15 in FHS, we created a composite triglyceride–HDL phenotype. The combined phenotype LOD score was 3.0 at the same marker on chromosome 15. Chromosome 15 likely harbors a susceptibility locus with an influence on triglycerides and HDL. Regions on chromosomes 6 and 8 may also contain loci contributing to inter-individual variation in plasma triglycerides.  相似文献   

4.
The total body fat mass and serum concentration of total cholesterol, HDL cholesterol, and triglyceride (TG) differ between standard diet-fed female inbred mouse strains MRL/MpJ (MRL) and SJL/J (SJL) by 38-120% (P < 0.01). To investigate genetic regulation of obesity and serum lipid levels, we performed a genome-wide linkage analysis in 621 MRLx SJL F2 female mice. Fat mass was affected by two significant loci, D11Mit36 [43.7 cM, logarithm of the odds ratio (LOD) 11.2] and D16Mit51 (50.3 cM, LOD 3.9), and one suggestive locus at D7Mit44 (50 cM, LOD 2.4). TG levels were affected by two novel loci at D1Mit43 (76 cM, LOD 3.8) and D12Mit201 (26 cM, LOD 4.1), and two suggestive loci on chromosomes 5 and 17. HDL and cholesterol concentrations were influenced by significant loci on chromosomes 1, 3, 5, 7, and 17 that were in the regions identified earlier for other strains of mice, except for a suggestive locus on chromosome 14 that was specific to the MRL x SJL cross. In summary, linkage analysis in MRL x SJL F2 mice disclosed novel loci affecting TG, HDL, and fat mass, a measure of obesity. Knowledge of the genes in these quantitative trait loci will enhance our understanding of obesity and lipid metabolism.  相似文献   

5.
Genomic regions that influence LDL particle size in African Americans are not known. We performed family-based linkage analyses to identify genomic regions that influence LDL particle size and also exert pleiotropic effects on two closely related lipid traits, high density lipoprotein cholesterol (HDL-C) and triglycerides, in African Americans. Subjects (n = 1,318, 63.0 +/- 9.5 years, 70% women, 79% hypertensive) were ascertained through sibships with two or more individuals diagnosed with essential hypertension before age 60. LDL particle size was measured by polyacrylamide gel electrophoresis, and triglyceride levels were log-transformed to reduce skewness. Genotypes were measured at 366 microsatellite marker loci distributed across the 22 autosomes. Univariate and bivariate linkage analyses were performed using a variance components approach. LDL particle size was highly heritable (h(2) = 0.78) and significantly (P < 0.0001) genetically correlated with HDL-C (rho(G) = 0.32) and log triglycerides (rho(G) = -0.43). Significant evidence of linkage for LDL particle size was present on chromosome 19 [85.3 centimorgan (cM), log of the odds (LOD) = 3.07, P = 0.0001], and suggestive evidence of linkage was present on chromosome 12 (90.8 cM, LOD = 2.02, P = 0.0011). Bivariate linkage analyses revealed tentative evidence for a region with pleiotropic effects on LDL particle size and HDL-C on chromosome 4 (52.9 cM, LOD = 2.06, P = 0.0069). These genomic regions may contain genes that influence interindividual variation in LDL particle size and potentially coronary heart disease susceptibility in African Americans.  相似文献   

6.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

7.
To identify genetic loci influencing blood lipid levels in Caribbean Hispanics, we first conducted a genome-wide linkage scan in 1,211 subjects from 100 Dominican families on five lipid quantitative traits: total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG), and LDL-C/HDL-C ratio. We then investigated the association between blood lipid levels and 21,361 single nucleotide polymorphisms (SNP) under the 1-logarithm of odds (LOD) unit down regions of linkage peaks in an independent community-based subcohort (N = 814, 42% Dominican) from the Northern Manhattan Study (NOMAS). We found significant linkage evidence for LDL-C/HDL-C on 7p12 (multipoint LOD = 3.91) and for TC on 16q23 (LOD = 3.35). In addition, we identified suggestive linkage evidence of LOD > 2.0 on 15q23 for TG, 16q23 for LDL-C, 19q12 for TC and LDL-C, and 20p12 for LDL-C. In the association analysis of the linkage peaks, we found that seven SNPs near FLJ45974 were associated with LDL-C/HDL-C with a nominal P < 3.5 × 10(-5), in addition to associations (P < 0.0001) for other lipid traits with SNPs in or near CDH13, SUMF2, TLE3, FAH, ARNT2, TSHZ3, ZNF343, RPL7AL2, and TMC3. Further studies are warranted to perform in-depth investigations of functional genetic variants in these regions.  相似文献   

8.
A genome-wide linkage study was performed to identify chromosomal regions harboring genes influencing lipid and lipoprotein levels. Linkage analyses were conducted for four quantitative lipoprotein/lipid traits, i.e., total cholesterol, triglyceride, HDL-cholesterol (HDL-C), and LDL-C concentrations, in 930 subjects enrolled in the Québec Family Study. A maximum of 534 pairs of siblings from 292 nuclear families were available. Linkage was tested using both allele-sharing and variance-component linkage methods. The strongest evidence of linkage was found on chromosome 12q14.1 at marker D12S334 for HDL-C, with a logarithm of the odds (LOD) score of 4.06. Chromosomal regions harboring quantitative trait loci (QTLs) for LDL-C included 1q43 (LOD = 2.50), 11q23.2 (LOD = 3.22), 15q26.1 (LOD = 3.11), and 19q13.32 (LOD = 3.59). In the case of triglycerides, three markers located on 2p14, 11p13, and 11q24.1 provided suggestive evidence of linkage (LOD > 1.75). Tests for total cholesterol levels yielded significant evidence of linkage at 15q26.1 and 18q22.3 with the allele-sharing linkage method, but the results were nonsignificant with the variance-component method. In conclusion, this genome scan provides evidence for several QTLs influencing lipid and lipoprotein levels. Promising candidate genes were located in the vicinity of the genomic regions showing evidence of linkage.  相似文献   

9.
We conducted a genome-wide scan using variance components linkage analysis to localize quantitative-trait loci (QTLs) influencing triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol, and total cholesterol (TC) levels in 3,071 subjects from 459 families with atherogenic dyslipidemia. The most significant evidence for linkage to TG levels was found in a subset of Turkish families at 11q22 [logarithm of the odds ratio (LOD)=3.34] and at 17q12 (LOD=3.44). We performed sequential oligogenic linkage analysis to examine whether multiple QTLs jointly influence TG levels in the Turkish families. These analyses revealed loci at 20q13 that showed strong epistatic effects with 11q22 (conditional LOD=3.15) and at 7q36 that showed strong epistatic effects with 17q12 (conditional LOD=3.21). We also found linkage on the 8p21 region for TG in the entire group of families (LOD=3.08). For HDL-C levels, evidence of linkage was identified on chromosome 15 in the Turkish families (LOD=3.05) and on chromosome 5 in the entire group of families (LOD=2.83). Linkage to QTLs for TC was found at 8p23 in the entire group of families (LOD=4.05) and at 5q13 in a subset of Turkish and Mediterranean families (LOD=3.72). These QTLs provide important clues for the further investigation of genes responsible for these complex lipid phenotypes. These data also indicate that a large proportion of the variance of TG levels in the Turkish population is explained by the interaction of multiple genetic loci.  相似文献   

10.
Genetic determinants of obesity-related lipid traits   总被引:1,自引:0,他引:1  
In our ongoing effort to identify genes influencing the biological pathways that underlie the metabolic disturbances associated with obesity, we performed genome-wide scanning in 2,209 individuals distributed over 507 Caucasian families to localize quantitative trait loci (QTLs), which affect variation of plasma lipids. Pedigree-based analysis using a quantitative trait variance component linkage method that localized a QTL on chromosome 7q35-q36, which linked to variation in levels of plasma triglyceride [TG, logarithm of odds (LOD) score = 3.7] and was suggestive of linkage to LDL-cholesterol (LDL-C, LOD = 2.2). Covariates of the TG linkage included waist circumference, fasting insulin, and insulin:glucose, but not body mass index or hip circumference. Plasma HDL-cholesterol (HDL-C) levels were suggestively linked to a second QTL on chromosome 12p12.3 (LOD = 2.6). Five other QTLs with lower LOD scores were identified for plasma levels of LDL-C, HDL-C, and total cholesterol. These newly identified loci likely harbor genetic elements that influence traits underlying lipid adversities associated with obesity.  相似文献   

11.
OBJECTIVES: The purpose of this study was to examine carefully heterogeneity underlying evidence for linkage to type 2 diabetes (T2DM) on chromosome 6q from two sets of FUSION families. METHODS: Ordered subsets analysis (OSA) was performed on two sets of FUSION families. For OSA results showing significant improvement in evidence for linkage, T2DM-related phenotypes were compared between individuals with T2DM within the subset versus the complement. RESULTS: OSA analysis revealed 105 families with the highest average HDL to total cholesterol ratio (HDL ratio) that had strongly increased evidence for linkage (MLS = 7.91 at 78.0 cM; uncorrected p = 0.00002). Subjects with T2DM within this subset were significantly leaner, had lower fasting glucose, insulin, and C-peptide, and more favorable cardiovascular risk profile compared to the complement set of subjects with T2DM. OSA also revealed 33 families with the lowest average fasting insulin that had increased evidence for linkage at a second locus (MLS = 3.45 at 128 cM; uncorrected p = 0.017) coincident with quantitative trait locus linkage analysis results for fasting and 2-hour insulin in subjects without T2DM. CONCLUSIONS: These results suggest two diabetes susceptibility loci on chromosome 6q that may affect subsets of individuals with a milder form of T2DM.  相似文献   

12.
Abnormal lipid levels are important risk factors for cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing total cholesterol (TC), LDL, HDL and triglyceride in families residing in American Samoa and Samoa as well as in a combined sample from the two polities. We adjusted the traits for a number of environmental covariates, such as smoking, alcohol consumption, physical activity, and material lifestyle. We found suggestive univariate linkage with log of the odds (LOD) scores > 3 for LDL on 6p21-p12 (LOD 3.13) in Samoa and on 12q21-q23 (LOD 3.07) in American Samoa. Furthermore, in American Samoa on 12q21, we detected genome-wide linkage (LOD(eq) 3.38) to the bivariate trait TC-LDL. Telomeric of this region, on 12q24, we found suggestive bivariate linkage to TC-HDL (LOD(eq) 3.22) in the combined study sample. In addition, we detected suggestive univariate linkage (LOD 1.9-2.93) on chromosomes 4p-q, 6p, 7q, 9q, 11q, 12q 13q, 15q, 16p, 18q, 19p, 19q and Xq23 and suggestive bivariate linkage (LOD(eq) 2.05-2.62) on chromosomes 6p, 7q, 12p, 12q, and 19p-q. In conclusion, chromosome 6p and 12q may host promising susceptibility loci influencing lipid levels; however, the low degree of overlap between the three study samples strongly encourages further studies of the lipid-related traits.  相似文献   

13.
Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.  相似文献   

14.
In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance.  相似文献   

15.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

16.
The plasma lipid concentrations and obesity of C57BL/6J (B6) and 129S1/SvImJ (129) inbred mouse strains fed a high-fat diet containing 15% dairy fat, 1% cholesterol, and 0.5% cholic acid differ markedly. To identify the loci controlling these traits, we conducted a quantitative trait loci (QTL) analysis of 294 (B6 x 129) F(2) females fed a high-fat diet for 14 weeks. Non-HDL cholesterol concentrations were affected by five significant loci: Nhdlq1 [chromosome 8, peak centimorgan (cM) 38, logarithm of odds [LOD] 4.4); Nhdlq4 (chromosome 10, cM 70, LOD 4.0); Nhdlq5 (chromosome 6, cM 0) interacting with Nhdlq4; Nhdlq6 (chromosome 7, cM 10) interacting with Nhdlq1; and Nhdlq7 (chromosome 15, cM 0) interacting with Nhdlq4. Triglyceride (TG) concentrations were affected by three significant loci: Tgq1 (chromosome 18, cM 42, LOD 3.2) and Tgq2 (chromosome 9, cM 66) interacting with Tgq3 (chromosome 4, cM 58). Obesity measured by percentage of body fat mass and body mass index was affected by two significant loci: Obq16 (chromosome 8, cM 48, LOD 10.0) interacting with Obq18 (chromosome 9, cM 65). Knowing the genes for these QTL will enhance our understanding of obesity and lipid metabolism.  相似文献   

17.
To determine whether a common quantitative trait locus (QTL) influences the variation of fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) levels, we used a bivariate multipoint linkage analysis with 654 polymorphic markers in 99 white and 101 black families. The phenotypes were investigated under two conditions: at baseline and after a 20-week exercise training intervention. A maximum genome-wide bivariate LOD score of 3.0 (p = 0.00010) was found on chromosome 12q23-q24, located within the IGF1 gene (insulin-like growth factor 1, at 107 cM) for TG and HDL-C at baseline in whites. This bivariate linkage peak is considerably higher than the univariate linkage results at the same chromosome location for either trait (for TG, LOD = 2.07, p = 0.00108; for HDL-C, LOD = 2.04, p = 0.00101). The genetic correlations between baseline TG and HDL-C levels were -0.14 for the residual and -0.33 for the QTL components. Moreover, association analysis showed that TG, HDL-C, and IGF1 are significantly associated (p = 0.04). In conclusion, these results suggest that a QTL on chromosome 12q23-q24 influences the variation of plasma TG and HDL-C levels. Further investigation should confirm whether IGF1 or another nearby gene is responsible for the concomitant variation in TG and HDL-C levels.  相似文献   

18.
Small, dense LDLs and hypertriglyceridemia, two highly correlated and genetically influenced risk factors, are known to predict for risk of coronary heart disease. The objective of this study was to perform a whole-genome scan for linkage to LDL size and triglyceride (TG) levels in 26 kindreds with familial hypertriglyceridemia (FHTG). LDL size was estimated using gradient gel electrophoresis, and genotyping was performed for 355 autosomal markers with an average heterozygosity of 76% and an average spacing of 10.2 centimorgans (cMs). Using variance components linkage analysis, one possible linkage was found for LDL size [logarithm of odds (LOD) = 2.1] on chromosome 6, peak at 140 cM distal to marker F13A1 (closest marker D6S2436). With adjustment for TG and/or HDL cholesterol, the LOD scores were reduced, but remained in exactly the same location. For TG, LOD scores of 2.56 and 2.44 were observed at two locations on chromosome 15, with peaks at 29 and 61 cM distal to marker D15S822 (closest markers D15S643 and D15S211, respectively). These peaks were retained with adjustment for LDL size and/or HDL cholesterol. These findings, if confirmed, suggest that LDL particle size and plasma TG levels could be caused by two different genetic loci in FHTG.  相似文献   

19.
Coronary heart disease (CHD) accounts for half of the 1 million deaths annually ascribed to cardiovascular disease and for almost all of the 1.5 million acute myocardial infarctions. Within families affected by early and apparently heritable CHD, dyslipidemias have a much higher prevalence than in the general population; 20%-30% of early familial CHD has been ascribed to primary hypoalphalipoproteinemia (low HDL-C). This study assesses the evidence for linkage of low HDL-C to chromosomal region 11q23 in 105 large Utah pedigrees ascertained with closely related clusters of early CHD and expanded on the basis of dyslipidemia. Linkage analysis was performed by use of 22 STRP markers in a 55-cM region of chromosome 11. Two-point analysis based on a general, dominant-phenotype model yielded LODs of 2.9 for full pedigrees and 3.5 for 167 four-generation split pedigrees. To define a localization region, model optimization was performed using the heterogeneity, multipoint LOD score (mpHLOD). This linkage defines a region on 11q23.3 that is approximately 10 cM distal to-and apparently distinct from-the ApoAI/CIII/AIV gene cluster and thus represents a putative novel localization for the low HDL-C phenotype.  相似文献   

20.
The NZB/B1NJ (NZB) mouse strain exhibits high cholesterol and HDL levels in blood compared with several other strains of mice. To study the genetic regulation of blood lipid levels, we performed a genome-wide linkage analysis in 542 chow-fed F2 female mice from an NZBxRF/J (RF) intercross and in a combined data set that included NZBxRF and MRL/MpJxSJL/J intercrosses. In the NZBxRF F2 mice, the cholesterol and HDL concentrations were influenced by quantitative trait loci (QTL) on chromosome (Chr) 5 [logarithm of odds (LOD) 17-19; D5Mit10] that was in the region identified earlier in crosses involving NZB mice, but two QTLs on Chr 12 (LOD 4.7; D12Mit182) and Chr 19 (LOD 5.7; D19Mit1) were specific to the NZBxRF intercross. Triglyceride levels were affected by two novel QTLs at D12Mit182 (LOD 8.7) and D15Mit13 (LOD 3.5). The combined-cross linkage analysis (1,054 mice, 231 markers) 1) identified four shared QTLs (Chrs 5, 7, 14, and 17) that were not detected in one of the parental crosses and 2) improved the resolution of two shared QTLs. In summary, we report additional loci regulating lipid levels in NZB mice that had not been identified earlier in crosses involving the NZB strain of mice. The identification of shared loci from multiple crosses increases confidence toward finding the QTL gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号