首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lake Bonney is a chemically stratified, permanently ice‐covered Antarctic lake that is unusual because anomalous nutrient concentrations in the east lobe suggest that denitrification occurs in the deep suboxic waters of the west lobe but not the east lobe, resulting in high concentrations of nitrate and nitrite below the east lobe chemocline. Environmental factors that usually control denitrification rates (e.g. organic carbon, nitrate, oxygen) do not appear to explain the nitrate distribution in the east lobe, suggesting that other factors (e.g. trace metals, salts, microbial community structure, etc.) may be involved. In order to explore the potential importance of microbial community composition, samples collected from multiple depths in both lobes were compared on the basis of 16S rRNA gene diversity. 16S rRNA polymerase chain reaction (PCR) clone libraries generated from five depths were subjected to restriction fragment length polymorphism (RFLP), rarefaction, statistical and phylogenetic analyses. Bacterial and archaeal 16S rRNA gene sequences were determined for clones corresponding to unique RFLP patterns. The bacterial community below the chemocline (at 25 m) in the east lobe was the least diverse of the five depths analysed and was compositionally distinct from the communities of the overlying waters. The greatest compositional overlap was observed between 16 and 19 m in the east lobe, while the east lobe at 25 m and the west lobe at 13 and 16 m had relatively distinct communities. Despite very little compositional overlap between the suboxic, hypersaline depths of the east and west lobes (25 m and 16 m, respectively), sequences closely related to the denitrifying Marinobacter strain ELB17 previously isolated from the east lobe were found in both libraries. Most of the Lake Bonney sequences are fairly distinct from those reported from other Antarctic environments. Archaeal 16S rRNA genes were only successfully amplified from the two hypersaline depths analysed, with only one identical halophilic sequence type occurring in both libraries, indicating extremely low archaeal diversity. Overall, microbial community composition varies both between lobes and across depths within lobes in Lake Bonney, reflecting the steep gradients in physical/chemical parameters across the chemocline, as well as the anomalous nutrient chemistry of the system.  相似文献   

2.
The McMurdo Dry Valleys of Antarctica harbor numerous permanently ice-covered lakes, which provide a year-round oasis for microbial life. Microbial eukaryotes in these lakes occupy a variety of trophic levels within the simple aquatic food web ranging from primary producers to tertiary predators. Here, we report the first molecular study to describe the vertical distribution of the eukaryotic community residing in the photic zone of the east lobe (ELB) and west lobe (WLB) of the chemically stratified Lake Bonney. The 18S ribosomal RNA (rRNA) libraries revealed vertically stratified populations dominated by photosynthetic protists, with a cryptophyte dominating shallow populations (ELB–6 m; WLB–10 m), a haptophyte occupying mid-depths (both lobes 13 m) and chlorophytes residing in the deepest layers (ELB–18 and 20 m; WLB–15 and 20 m) of the photic zone. A previously undetected stramenopile occurred throughout the water column of both lobes. Temporal variation in the eukaryotic populations was examined during the transition from Antarctic summer (24-h sunlight) to polar night (complete dark). Protist diversity was similar between the two lobes of Lake Bonney due to exchange between the photic zones of the two basins via a narrow bedrock sill. However, vertical and temporal variation in protist distribution occurred, indicating the influence of the unique water chemistry on the biology of the two dry valley watersheds.  相似文献   

3.
Lower Mystic Lake, Massachusetts, USA, has an anoxic black water layer just below the top of the chemocline (15.5–16.0 m). Bacterial concentrations averaged 10.4 × 106 cells/ml in the black water layer and 4.0 × 106 cells/ml below 17 m. Below the chemocline, microbial concentrations were linearly correlated to the vertical light absorption coefficient, r = 0.82. Phototrophic bacteria were not detected below the top of the chemocline, due to a low PAR that never exceeded 0.0001% surface illumination. Sulfate‐reducing bacteria and methanogens were enriched from the monimolimnion in selective media. Below the chemocline, H2S concentrations were in excess of 11 mmoles/l and Fe, Mn, CH4 and CO2 concentrations were elevated compared to the mixolimnion. Nuisance releases of H2S occurred from the lake in 1965. Although the monimolimnion remains a highly reduced environment rich in H2S, the potential of further nuisance releases is small due to the diminished volume of the monimolimnion and the relatively deep chemocline.  相似文献   

4.
The Urania basin is a hypersaline sulfidic brine lake at the bottom of the eastern Mediterranean Sea. Since this basin is located at a depth of ~3,500 m below the sea surface, it receives only a small amount of phytoplankton organic carbon. In the present study, the bacterial assemblages at the interface between the hypersaline brine and the overlaying seawater were investigated. The sulfide concentration increased from 0 to 10 mM within a vertical interval of 5 m across the interface. Within this chemocline, the total bacterial cell counts and the exoenzyme activities were elevated. Employing 11 cultivation methods, we isolated a total of 70 bacterial strains. The 16S ribosomal DNA sequences of 32 of the strains were identical to environmental sequences detected in the chemocline by culture-independent molecular methods. These strains were identified as flavobacteria, Alteromonas macleodii, and Halomonas aquamarina. All 70 strains could grow chemoorganoheterotrophically under oxic conditions. Sixty-six strains grew on peptone, casein hydrolysate, and yeast extract, whereas only 15 strains did not utilize polymeric carbohydrates. Twenty-one of the isolates could grow both chemoorganotrophically and chemolithotrophically. While the most probable numbers in most cases ranged between 0.006 and 4.3% of the total cell counts, an unsually high value of 54% was determined above the chemocline with media containing amino acids as the carbon and energy source. Our results indicate that culturable bacteria thriving at the oxic-anoxic interface of the Urania basin differ considerably from the chemolithoautotrophic bacteria typical of other chemocline habitats.  相似文献   

5.
Lake Harutori is a brackish meromictic lake with a steep physicochemical gradient in shallow water. Anoxic water below the chemocline has been characterized by high concentrations of sulfide (>10 mM) and methane (>1.5 mM). Previously, we reported that uncultured bacteria in the SEEP-SRB1 group were major sulfate reducers in the lake [21], but knowledge of sulfur oxidation and methane metabolism was scarce. In this current study, the Lake Harutori microbial community structure in the mixolimnion (at depths of 1.5 m and 3.0 m), upper chemocline (3.5 m), and monimolimnion (4.5 m) was further investigated by 16S rRNA gene amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Reads of type I and II methanotrophs were retrieved mainly from 3.5 m and above. Methanotrophic bacteria detected by CARD-FISH accounted for 3.1% of DAPI-stained cells at 3.5 m. Detection frequencies of reads affiliated with the genera Sulfurimonas and Thiomicrorhabdus, which are known to comprise sulfur oxidizers, were relatively high at 3.5 m. Methanogenic archaeal reads were retrieved from the monimolimnion and they affiliated with the genus Methanosaeta. CARD-FISH counts indicated that the cells of Methanosaeta/Methanosarcina/Methanomicrobiales accounted for up to 0.8% of the DAPI-stained cells in the monimolimnion. On the other hand, many of the reads retrieved primarily from the monimolimnion were affiliated with phylogenetically novel uncultured groups.  相似文献   

6.
The Pretoria Salt Pan, South Africa, a small (0.076 km2), shallow (Zmax = 2.85 m), hypersaline, maar lake, lies within a clearly-defined crater and is fed by a perennial, slightly saline (3 g l-1) artesian spring. The lake has two distinct solar-heated peaks in its temperature profile, each of these peaks located in a highly turbid (>80 JTU) layer below a steep chemocline. The upper thermal peak, located at a depth of 10 cm, was transient, with a distinct diel pattern of diurnal heating and nocturnal cooling. The lower thermal peak, located below a steep chemocline and centred at approximately 60 cm, was stable and showed a seasonal pattern of winter heating (maximum: 38.5°C) and summer cooling (minimum: 27.4°C). The unusual bathymetry of the lake, combined with the sheltering effect of the crater rim and steep salinity gradient between the surface (30–80 g l-1) and bottom water (280–310 g l-1) prevented windmixing of surface waters beyond a depth of approximately 50 cm. During a 28 month study all water deeper than 55 cm remained anaerobic, and the lake appeared to be meromictic.  相似文献   

7.
The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5–4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5′-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina–Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2–4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori.  相似文献   

8.
The Urania basin is a hypersaline sulfidic brine lake at the bottom of the eastern Mediterranean Sea. Since this basin is located at a depth of approximately 3,500 m below the sea surface, it receives only a small amount of phytoplankton organic carbon. In the present study, the bacterial assemblages at the interface between the hypersaline brine and the overlaying seawater were investigated. The sulfide concentration increased from 0 to 10 mM within a vertical interval of 5 m across the interface. Within this chemocline, the total bacterial cell counts and the exoenzyme activities were elevated. Employing 11 cultivation methods, we isolated a total of 70 bacterial strains. The 16S ribosomal DNA sequences of 32 of the strains were identical to environmental sequences detected in the chemocline by culture-independent molecular methods. These strains were identified as flavobacteria, Alteromonas macleodii, and Halomonas aquamarina. All 70 strains could grow chemoorganoheterotrophically under oxic conditions. Sixty-six strains grew on peptone, casein hydrolysate, and yeast extract, whereas only 15 strains did not utilize polymeric carbohydrates. Twenty-one of the isolates could grow both chemoorganotrophically and chemolithotrophically. While the most probable numbers in most cases ranged between 0.006 and 4.3% of the total cell counts, an unusually high value of 54% was determined above the chemocline with media containing amino acids as the carbon and energy source. Our results indicate that culturable bacteria thriving at the oxic-anoxic interface of the Urania basin differ considerably from the chemolithoautotrophic bacteria typical of other chemocline habitats.  相似文献   

9.
The vertical and seasonal distributions of the phytoflagellate Cryptomonas spp., and its most common, the planktonic ciliate predators (Oligotrichida, Scuticociliatida, Hypotrichida and Prostomatida) were investigated in chemocline region of small saline, meromictic lake Shunet (Siberia, Russia) during 2003 and 2005. The lake has a pronounced chemocline, with abundance of purple and green sulphur bacteria. Vertical distribution of the Cryptomonas populations near the oxic/anoxic boundary layer was studied at close intervals in water sampled using a hydraulically operated thin-layer sampler. In both summer and winter, Cryptomonas peaked in water stratum 5–10 cm above anoxic zone or in the anoxic zone water column in the chemocline (about 5 m). Ciliate densities and biomass were also much higher in chemocline than in mixolimnion. The range of diurnal migration of Cryptomonas population was not very wide, and it was restricted to layers with high light intensity. The ciliates were sometimes detected above the upper border of the anoxic zone but also several centimetres below this zone.  相似文献   

10.
The characteristic feature of the physical structure of Lac Pavin is a distinct and permanent chemically induced density increase between about 60 and 70 m depth. This chemocline separates the seasonally mixed mixolimnion from the monimolimnion, which is characterized by elevated temperature and salinity as well as complete anoxia. Previously published box-models of the lake postulated substantial groundwater input at the lake bottom, and consequently a short water residence time in the monimolimnion and high fluxes of dissolved constituents across the chemocline. We present a new view of the physical structure and dynamics of Lac Pavin, which is based on the results of high-resolution CTD profiles, transient and geochemical tracers (tritium, CFCs, helium), and numerical modeling. The CTD profiles indicate the existence of a sublacustrine spring above rather than below the chemocline. A stability analysis of the water column suggests that vertical turbulent mixing in the chemocline is very weak. A numerical one-dimensional lake model is used to reconstruct the evolution of transient tracer distributions over the past 50 years. Model parameters such as vertical diffusivity and size of sublacustrine springs are constrained by comparison with observed tracer data. Whereas the presence of a significant water input to the monimolimnion can clearly be excluded, the input to the mixolimnion – both at the surface and from the indicated sublacustrine spring – cannot be accurately determined. The vertical turbulent diffusivity in the chemocline is well constrained to K 5×10-8 m2 s-1, about a factor of three below the molecular diffusivity for heat. Assuming thus purely molecular heat transport, the heat flow through the chemocline can be estimated to between 30 and 40 mW m-2. With respect to dissolved constituents, the very weak turbulent diffusive exchange is equivalent to a stagnant monimolimnion with a residence time of nearly 100 years. Based on these results and vertical concentration profiles of dissolved species, diffusive fluxes between monimolimnion and mixolimnion can be calculated. A large excess of helium with a 3He/4He ratio of (9.09 ± 0.01)×10-6 (6.57 R a) is present in the monimolimnion, clearly indicating a flux of magmatic gases into the monimolimnion. We calculate a flux of 1.0×10-12 mol m-2 s-1 for mantle helium and infer a flux of 1.2×10-7 mol m-2 s-1 (72 t year-1) for magmatic CO2. The monimolimnion appears to be in steady state with respect to these fluxes.  相似文献   

11.
The spatiotemporal distribution of chlorophyll pigments (chloropigments) in the water column of a meromictic lake, Lake Suigetsu (Fukui, Japan), was investigated. Water samples were collected from the central basin of Lake Suigetsu bimonthly between May 2008 and March 2010 at appropriate depths, including the oxic surface, oxic–anoxic interface, and anoxic bottom layers. Chlorophyll a, related to cyanobacteria and eukaryotic phytoplankton, was detected throughout the water column during the years of the study, whereas bacteriochlorophyll e, related to brown-colored green sulfur bacteria, was detected in the anoxic layers below the chemocline at a maximum concentration of 825 μg L?1. The concentration of bacteriochlorophyll e was generally maximal at or just below the chemocline of the lake. The cellular content of bacteriochlorophyll e was estimated to be low in the upper part of the chemocline and tended to increase with increasing water depth. Bacteriochlorophyll a, which was presumably related to purple sulfur bacteria, was only detected at the chemocline during summer and autumn at concentrations of 5.4–16.3 μg L?1. Our analysis of the chloropigment distribution for the two years of the study suggested that brown-colored green sulfur bacteria are the predominant phototroph in the anoxic layers of Lake Suigetsu, and that these play a significant role in the carbon and sulfur cycling of the lake, especially from spring to summer.  相似文献   

12.
Production and decomposition processes in a saline meromictic lake   总被引:1,自引:1,他引:0  
Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1–1) was often similar to phytoplankton carbon (44–300 µgC 1–1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1–1, bacteriochlorophyll a 1500–70001µ 1–1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m–2 d–1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1–1 h–1) than for glucose (0.3–1.4 µgC 1–1 h–1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.  相似文献   

13.
A dense accumulation of the phototrophic consortium “Pelochromatium roseum” in a small, eutrophic, freshwater lake (Dagowsee, Brandenburg, Germany) was investigated. Within the chemocline, the number of epibionts of the consortia represented up to 19% of the total number of bacteria. Per “P. roseum” a mean value of 20 epibionts was determined. Similar to other aquatic habitats, consortia in the Dagowsee were found only at low light intensities (< 7 μmol quanta m–2 s–1) and low sulfide concentrations (0–100 μM). In dialysis cultures of “P. roseum”, bacterial cells remained in a stable association only when incubated at light intensities between 5 and 10 μmol quanta m–2 s–1. Intact consortia from natural samples had a buoyant density of 1046.8 kg m–3, which was much higher than that of ambient chemocline water (995.8 kg m–3). Under environmental conditions and without motility, this density difference would result in rapid sedimentation of consortia toward the lake bottom. Our results indicate that (1) consortia are adapted to a very narrow regime of light intensities and sulfide concentrations, (2) motility and tactic responses must be of ecological significance for the colonization of the free water column of lakes, and (3) phototrophic growth of consortia can be explained only by a cycling of sulfur species in the chemocline, possibly within the consortia themselves. Received: 27 May 1997 / Accepted: 16 September 1997  相似文献   

14.
A resurgence of interest in the ecology of perennially ice-covered lakes in the McMurdo dry valleys has necessitated a review of our knowledge of the physical and chemical properties of these unusual lakes. Salinities in the ice-covered lakes cover a range from freshwater to hypersaline brines. Recent measurements of salt composition and concentrations in Lake Bonney reveal little change below the chemocline since extensive measurements made in 1960–1961, although lake level has risen by approximately 5 m since that time. The rise in lake level has resulted in a thickening of the freshwater layer above the chemocline. Temperature structure has adjusted to the effects of increased lake level on heat transfer processes such as transmission and absorption of solar radiation in the water column.Questions about how water-column stability affects biology in Lake Bonney have motivated the formulation of a method to compute density from in situ measurements of temperature, conductivity and pressure. Owing to high salt concentration and unique ion ratios, we modified the UNESCO Equation of State for seawater to predict density at salinities greater than 42. The modifications merge smoothly with the UNESCO equations at a salinity of 42. At salinities below 42 the UNESCO equations give excellent predictions of density.  相似文献   

15.
Rates of oxygenic and anoxygenic photosynthesis, chemoautotrophic and heterotrophic bacterial production and protozoan bacterivory were measured in the pelagic zone of the stratified brackish-water lake with the purpose to determine the vertical distribution of these processes and to estimate their significance in the functioning of planktonic community of the lake. In midsummer, total daily primary productivity was about 1.3 g C m–2, of which 72% was produced by the phytoplankton, 24% by the chemoautotrophic bacteria, and only 4% by the phototrophic sulphur bacteria. Thus anoxygenic photosynthesis is a negligible source of organic matter in the lake. The production of heterotrophic bacteria averaged 1.5 g C m–2 d–1 and exceeded the total photosynthesis of phytoplankton and photosynthetic bacteria by a factor of 1.5. The estimated total primary production was too low to sustain the bacterial production. Probably the carbon cycle in the lake is dependent on the input of allochthonous organic matter. As a rule, the maximal rates of primary production and heterotrophic bacterial production were found in the chemocline or at the upper boundary of the chemocline. Heterotrophic flagellates dominated among the protozoan populations and were the major consumers of the bacterioplankton production in the lake. They showed maximal ingestion rates from 2.3 to 2.9 mg C m–3 h–1 at the upper boundary of the chemocline, where they consumed from 50 to 54% of the production of heterotrophic bacteria. Data obtained indicate that in Lake Shira the oxic-anoxic interface is the site of the most intensive production and mineralization of organic matter.  相似文献   

16.
Phytoplankton populations in perennially ice-covered Lake Bonney, Antarctica grow in a unique non-turbulent environment. The absence of turbulence generated by winds or major streams, combined with strong vertical gradients in temperature and nutrients, create vertically stratified environmental conditions that support three discrete phytoplankton populations in the east lobe of this lake. Phytoplankton biomass and photosynthesis were measured in the east lobe of Lake Bonney during the winter-spring transicion (September) to mid-summer (January). During this period, irradiance beneath the ice increased from 0.03 to 1.9 mol quanta m−2 d−1. Chlorophylla concentrations ranged from 0.03 to 3.8 μl−1 within the trophogenic zone (just beneath the permanent ice cover to 20 m) and photosynthesis ranged from below detection to 3.2 μg Cl−1 d−1. Our results indicate: (1) phytoplankton photosynthesis began in late winter (before 9 September, our earliest sampling date); (2) maxima for phytoplankton biomass and production developed sequentially in time from the top to the bottom of the trophogenic zone, following the seasoral increase in irradiance; and (3) the highest photosynthetic efficiencies occurred in early spring, then decreased over the remainder of the phytoplankton growth season. The spring decrease in photosynthetic rates for shallower phytoplankton appeared to be related to nutrient availability, while photosynthesis in the deeper populations was solely lightdependent.  相似文献   

17.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

18.
Methane production in meromictic Ace Lake,Antarctica   总被引:3,自引:0,他引:3  
Methane occurred in the monimolimnion, at depths greater than 11 m, of an antarctic meromictic lake, Ace Lake (depth 24.7 m). Although the water of the lake was of approximate marine salinity, bottom waters were depleted in sulfate (less than 1 mmol 1–1). The temperature of the bottom waters of the lake were constantly between 1 °C and 2 °C. Rates of methanogenesis from 14C-labelled precursors (bicarbonate, formate and acetate) were determined in time course experiments with the detection of 14CH4 produced by a gas chromatography-gas proportional counting system. Rates of 14CH4 production were difficult to determine as the reactions were always near our limit of detection.Reliable determinations of rates of methanogenesis at some depths using some precursors were obtained, the fastest rate being 2.5 µmol kg–1 day–1 at depth 20 m. Assuming constant rates of methanogenesis with time, this would equate to a turnover of methane in the lake every two years.The slow rate of methanogenesis suggests that the methanogens in Ace Lake may be working at well below their optimum temperature although definitive statements regarding the presence of psychrophilic methanogens in this antarctic lake must await isolation attempts or longer field studies using alternative methodologies.  相似文献   

19.
Periodic high spring runoff, in addition to lake surface snow and ice melt, is shown to be a major cause of sharp secondary chemocline formation in a small (20 ha) lake arid and south-central British Columbia. Initially detected in 1982 at about 1 m and enhanced by high inflow of low salinity meltwater in spring 1983, the secondary chemocline gradually deepened and broke down over four subsequent years. Associated microstratification layers (major changes within a few cm of depth), exhibited very high temperatures (> 30 °C), and very high dissolved oxygen (> 200% saturation) as well as very low (close to 0% saturation) levels. Oxygen supersaturation resulted from photosynthetic production at the microstratification boundaries. In the springs of 1982 and 1983, formation of an anoxic layer between regions of high oxygen concentration, separated the phytoplankton and zooplankton communities into two layers above the primary chemocline. The several year persistence of the secondary chemoclines and associated interface processes (concentration of particulate organic matter, bacterial decomposition, nutrient regeneration, phytoplanktonic production) attest to their functional importance in this meromictic lake.  相似文献   

20.
Cook  Greg  Teufel  Amber  Kalra  Isha  Li  Wei  Wang  Xin  Priscu  John  Morgan-Kiss  Rachael 《Photosynthesis research》2019,141(2):209-228

Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号