共查询到20条相似文献,搜索用时 15 毫秒
1.
Arun Viswanathan Boney Kuriakose Shantharam Bharadwaj George Thomas 《Plant Molecular Biology Reporter》2011,29(4):825-834
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood,
their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such
an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid
seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed
the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged
tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen
production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during
anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases
in anther development still has to be elucidated. 相似文献
2.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
3.
The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses
UV-induced mutagenesis. However, this mutation significantly increases the frequency of spontaneous canavanine-resistance
mutations induced by disturbances in correcting errors of DNA replication and repair, which distinguishes it from all identified
alleles of gene MEC1. 相似文献
4.
Noel H. Holmgren 《Brittonia》2018,70(1):115-139
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations. 相似文献
5.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner.
The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate
larvae Galleria
mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host. 相似文献
6.
Genetic engineering of lactic acid bacteria (LAB) requires a reliable gene expression system. Especially, a stable promoter
is an important genetic element to induce gene expression in such a system. We report on a novel tuf promoter (Ptuf) of Lactococcus lactis subsp. lactis IL1403 that was screened and selected through analysis of previously published microarray data. Ptuf activity was examined and compared with three other known lactococcal promoters (PdnaJ, PpfkA, and Pusp45) using different bacteria as expression hosts. Each promoter was, respectively, fused to the promoterless and modified bmpB gene as a reporter, and we estimated promoter activity through BmpB expression. All promoters were active in IL1403, and
Ptuf activity was strongest among them. The activity of each promoter differed by host bacteria (Lactobacillus plantarum Lb25, Lactobacillus reuteri ATCC23272, and Escherichia coli Top10F’). Ptuf had the highest activity in IL1403 when growth reached late log phase. The activity of each promoter correlated with the
expression of each cognate gene in the microarray data (R
2 = 0.7186, P = 0.06968). This study revealed that novel food-grade promoters such as IL1403 Ptuf can be selected from microarray data for food-grade microorganisms and Ptuf can be used to develop a reliable gene expression system in L. lactis. 相似文献
7.
8.
Ferreira LQ Avelar KE Vieira JM de Paula GR Colombo AP Domingues RM Ferreira MC 《Current microbiology》2007,54(5):348-353
The Bacteroides genus, the most prevalent anaerobic bacteria of the intestinal tract, carries a plethora of the mobile elements, such as
plasmids and conjugative and mobilizable transposons, which are probably responsible for the spreading of resistance genes.
Production of β-lactamases is the most important resistance mechanism including cephalosporin resistance to β-lactam agents
in species of the Bacteroides fragilis group. In our previous study, the cfxA gene was detected in B. distasonis species, which encodes a clinically significant broad-spectrum β-lactamase responsible for widespread resistance to cefoxitin
and other β-lactams. Such gene has been associated with the mobilizable transposon Tn4555. Therefore, the aim of this study was to detect the association between the cfxA gene and the presence of transposon Tn4555 in 53 Bacteroides strains isolated in Rio de Janeiro, Brazil, by PCR assay. The cfxA gene was detected in 11 strains and the Tn4555 in 15. The transposon sequence revealed similarities of approximately 96% with the B. vulgatus sequence which has been deposited in GenBank. Hybridization assay was performed in attempt to detect the cfxA gene in the transposon. It was possible to associate the cfxA gene in 11 of 15 strains that harbored Tn4555. Among such strains, 9 presented the cfxA gene as well as Tn4555, but in 2 strains the cfxA gene was not detected by PCR assay. Our results confirm the involvement of Tn4555 in spreading the cfxA gene in Bacteroides species. 相似文献
9.
A genetic transformation system has been developed for callus cells of Crataegus
aronia using Agrobacterium
tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with
5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different
types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red
colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli
were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this
is the first time to report an Agrobacterium-mediated transformation system in Crataegus
aronia. 相似文献
10.
The Sho gene from Petunia hybrida encodes an enzyme for cytokinin synthesis. Here we report on the effects of Shogene expression on potato development. In contrast to transgenic potato expressing the Agrobacterium ipt gene, moderate Sho expression resulted in sufficient root development that allowed the cultivation of the Sho transformants in soil. The most pronounced effects detectable in these lines were an enhanced shoot production, delayed tuber
formation, significant reduction in tuber size, and inhibition of tuber dormancy. Sho expression predominantly associated with a strong increase in 2iP glucosides, accompanied by an increase in zeatin glucosides
in lines with very high Sho expression levels. The data demonstrate that it is possible to produce viable plants with enhanced cytokinin levels via constitutive Sho expression, which allows an assessment of cytokinin effects in all organs. 相似文献
11.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter
when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays
ADH1 5′ MAR, Nicotiana tabacum
Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed
between the cauliflower mosaic virus
35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated.
Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306. 相似文献
12.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
13.
14.
Alcohol dehydrogenase (ADH) activity in plants is generally associated with glycolytic fermentation, which facilitates cell survival during episodes of low-oxygen stress in water-logged roots as well as chronically hypoxic regions surrounding the vascular core. Work with tobacco and potato has implicated ADH activity in additional metabolic roles, including aerobic fermentation, acetaldehyde detoxification and carbon reutilization. Here a combination of approaches has been used to examine tissue-specific patterns of Adh gene expression in order to provide insight into the potential roles of alcohol dehydrogenases, using Petunia hybrida, a solanaceous species with well-characterized genetics. A reporter-gene study, relying on the promoters of Adh1 and Adh2 to drive expression of the gene for a green fluorescent protein derivative, mgfp5, revealed unexpectedly complex patterns of GFP fluorescence in floral tissues, particularly the stigma, style and nectary. Results of GC-MS analysis suggest the association of ADH with production of aromatic compounds in the nectary. Overall the results demonstrate selective recruitment of Adh gene family members in tissues and organs associated with diverse ADH functions. 相似文献
15.
Previous studies have shown that the AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer specifies a carpel- and stamen-specific expression in its native host species, but not in heterologous
species such as tobacco, which restricts its application in the engineering of male and female sterility. These findings also
imply that the AG regulatory mechanism that has evolved in Arabidopsis may, to some extent, have diverged from that of tobacco. To test whether a similar chimeric promoter created using the AG second intron/enhancer can overcome this barrier of evolutionary divergence in closely related species, we generated forward-
and reverse-oriented chimeric promoters, fPtAGIP and rPtAGIP, from the petunia AG second intron/enhancer (PtAGI) fragment and tested them in tobacco, which, like petunia, belongs to the Solanaceae family. Our results demonstrate that both fPtAGIP and rPtAGIP confer similar carpel- and stamen-specific expression without any leaky activity in vegetative tissues in tobacco as revealed
by tissue-specific gene expression and tissue ablation. This pattern resembles that driven by the AtAGIP in Arabidopsis and indicates that the AG regulatory mechanism is more conserved between tobacco and petunia than between tobacco and Arabidopsis. The petunia-derived promoters also exhibited petal-specific activity, and their activities in floral organs were substantially
influenced by the orientation of the PtAGI enhancer, with reverse-oriented enhancers displaying approximately double the effectiveness of forward-oriented enhancers.
These two properties are novel and have not been observed previously with AtAGIP promoters. Furthermore, we found that PtAGIP promoter-driven tissue ablation is effective for engineering complete sterility in plants, and the resulting sterile trait
is stable for at least three mitotic generations at various temperature regimes, which is important for the complete containment
of seed-, pollen-, and fruit-mediated gene flow in field conditions. 相似文献
16.
17.
Kurtzman CP 《Antonie van Leeuwenhoek》2011,100(3):455-462
Ogataea
parapolymorpha sp. n. (NRRL YB-1982, CBS 12304, type strain), the ascosporic state of Candida
parapolymorpha, is described. The species appears homothallic, assimilates methanol as is typical of most Ogataea species and forms hat-shaped ascospores in asci that become deliquescent. O. parapolymorpha is closely related to Ogataea
angusta and Ogataea
polymorpha. The three species can be resolved from gene sequence analyses but are unresolved from fermentation and growth reactions
that are typically used for yeast identification. On the basis of multiple isolates, O. angusta is known only from California, USA, in association with Drosophila and Aulacigaster flies, O. parapolymorpha is predominantly associated with insect frass from trees in the eastern USA but O. polymorpha has been isolated from various substrates in the USA, Brazil, Spain and Costa Rica. 相似文献
18.
Rab11, an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in
regulating vesicular trafficking through the recycling of endosomal compartment. In order to gain an insight into the role
of this gene in myogenesis during embryonic development, we have studied the expression pattern of Rab11 in mesoderm during
muscle differentiation in Drosophila embryo. When dominant-negative or constitutively active Drosophila Rab11 proteins are expressed or Rab11 is reduced via double-stranded RNA in muscle precursors, they cause partial failure
of myoblast fusion and show anomalies in the shape of the muscle fibres. Our results suggest that Rab11 plays no role in cell fate specification in muscle precursors but is required late in the process of myoblast fusion.
This work was supported by grants from the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.). 相似文献
19.
Junsong Pan Junyi Tan Yuhui Wang Xiangyang Zheng Ken Owens Dawei Li Yuhong Li Yiqun Weng 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(7):1577-1587
Key message
Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.Abstract
Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.20.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora:
Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii
,
Rumex densiflorus var. pycnanthus
,
R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage. 相似文献