首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific.  相似文献   

3.
Changes in soil structure and in microbial population were recorded in a long term field experiment over the growing season of maize (June–November). Determinations were made on samples from plots which had received, for two years, the following treatments: mineral fertilizers, farmyard manure and three rates of compost. Seasonal variations were observed for the stability of soil aggregates, total porosity, pore size distribution, mycorrhizal infection and aerobic cellulolytic microorganisms. The stability of the soil aggregates changed in a similar way to that found for both mycorrhizal infection and the number of aerobic cellulolytic microorganisms. Physical characteristics were not affected in any instance by the organic dressings and microbiological populations were generally influenced only by the higher doses of compost.  相似文献   

4.
5.
In soil, fungal colonization of plant roots has been traditionally studied by indirect methods such as microbial isolation that do not enable direct observation of infection sites or of interactions between fungal pathogens and their antagonists. Confocal laser scanning microscopy was used to visualize the colonization of tomato roots in heat-treated soil and to observe the interactions between a nonpathogenic strain, Fo47, and a pathogenic strain, Fol8, inoculated onto tomato roots in soil. When inoculated separately, both fungi colonized the entire root surface, with the exception of the apical zone. When both strains were introduced together, they both colonized the root surface and were observed at the same locations. When Fo47 was introduced at a higher concentration than Fol8, it colonized much of the root surface, but hyphae of Fol8 could still be observed at the same location on the root. There was no exclusion of the pathogenic strain by the presence of the nonpathogenic strain. These results are not consistent with the hypothesis that specific infection sites exist on the root for Fusarium oxysporum and instead support the hypothesis that competition occurs for nutrients rather than for infection sites.  相似文献   

6.
Sixteen endophytic actinobacteria isolated from roots of native plants were evaluated for their antagonistic potential against soil-borne phytopathogenic fungi. Among them, three strong antagonistic isolates were selected and characterised for in vitro plant-growth-promoting and biocontrol traits, including production of hydrogen cyanide, indole-3-acetic acid and siderophores, chitinase and β-1,3-glucanase activities, and inorganic phosphate solubilisation. In all trials, the strain Streptomyces sp. SNL2 revealed promising features. The selected actinobacteria were investigated for the biocontrol of Fusarium oxysporum f. sp. radicis lycopersici and for growth promotion of tomato (Solanum lycopersicum L. cv. Aïcha) seedlings in autoclaved and non-autoclaved soils. All seed-bacterisation treatments significantly reduced the root rot incidence compared to a positive control (with infested soil), and the isolate SNL2 exhibiting the highest protective activity. It reduced the disease incidence from 88.5% to 13.2%, whereas chemical seed treatment with Thiram® provided 14.6% disease incidence. Furthermore, isolate SNL2 resulted in significant increases in the dry weight, shoot and root length of seedlings. 16S rDNA sequence analysis showed that isolate SNL2 was related to Streptomyces asterosporus NRRL B-24328T (99.52% of similarity). Its interesting biocontrol potential and growth enhancement of tomato seedlings open up attractive uses of the strain SNL2 in crop improvement.  相似文献   

7.
赵娜  林威鹏  蔡昆争  王建武 《生态学报》2010,30(19):5327-5337
合理施用堆肥能够有效地改善植物的生长条件和土壤的生态环境,从而提高植物对病害的抗性。通过盆栽实验,研究了家畜堆肥浸渍液及堆肥混土对番茄青枯病的防治效果及其对土壤酶活性和土壤微生物功能多样性的影响。结果表明,家畜堆肥浸渍液及堆肥混土均对番茄青枯病有一定防治效果,以体积分数1∶1、1∶3的浸渍液处理和质量分数10%的堆肥混土处理效果较好,分别降低病情指数69.4%,31.5%和13.0%。而且浸渍液处理效果优于堆肥混土处理,浓度越高抗病效果越明显。堆肥混土处理可提高土壤脲酶活性,对蔗糖酶和过氧化氢酶活性影响不大;1∶1堆肥浸渍液处理能显著提高土壤脲酶和蔗糖酶活性。基于BIOLOG方法的土壤微生物群落功能研究表明,两种堆肥处理的平均每孔变化率(AWCD)值、Shannon多样性指数、Simpson多样性指数均较对照减小,而对于Alatalo均匀度指数则没有显著影响。不同堆肥处理间微生物碳源利用存在较大差异,堆肥混土处理的主要碳源是糖类和羧酸类物质,而浸渍液处理则是糖类和氨基酸类物质。通过主成分分析得到的堆肥处理聚类结果与各种处理的抗病性强弱分类情况相吻合,且与AWCD值、Shannon多样性指数、Simpson多样性指数的强弱分类也大致吻合。研究表明,施用家畜粪便堆肥主要通过改变土壤微生物群落多样性和土壤酶活性,提高番茄植株的抗病性。  相似文献   

8.
9.
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon (aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass and remain on the solid coproduct called biochar. Such pollutants could have adverse effects on the plant growth as well as microbial community in soil. Although biochar has been proposed as a ‘carbon negative strategy’ to mitigate the greenhouse gas emissions, the impacts of its application with respect to long‐term persistence and bioavailability of hazardous components are not clear. Moreover, the co‐occurrence of low molecular weight VOCs with PAHs in biochar may exert further phytotoxic effects. This review describes the basic need to unravel key mechanisms driving the storage vs. emission of these organics and the dynamics between the sorbent (biochar) and soil microbes. Moreover, there is an urgent need for standardized methods for quantitative analysis of PAHs and VOCs in biochar under environmentally relevant conditions. This review is also extended to cover current research gaps including the influence of biochar application on the short‐ and long‐term fate of PAHs and VOCs and the proper control tactics for biochar quality and associated risk.  相似文献   

10.
The kinetics of survival and inoculum potential of Fusarium oxysporum f.sp. lini were studied in soil. Two types of inoculum were compared: microconidia freshly harvested from a laboratory-grown culture and microchlamydospores produced in sterilized soil. Introduced at the same inoculum densities into a natural soil, the two types of inoculum showed similar behavior; the inoculum densities changed little with time, at least during 100 days. However, the two types of inoculum did differ in disease potential. A higher percentage of microchlamydospores than microconidia germinated in the rhizosphere of flax seedlings, and the heterotrophic fluorescein diacetate hydrolysing activity of the microchlamydospores was 100 times higher than that of microconidia. Moreover, the microchlamydospores produced more disease on flax than the microconidia even at a much lower inoculum density.  相似文献   

11.
Organic manures in combination with biochar might improve efficacy of biochar in improving soil functions related to hydro-physical properties and a field experiment was conducted over the course of two years with two levels of biochar @ 0 and 2tha−1 and four levels of compost (100% recommended dose of N through farm yard manure, 100% recommended dose of N through vermicompost, 50% recommended dose of N through farm yard manure, and vermicompost each, and unfertilized control). Each treatment was replicated three times in factorial randomized block design (RBD). The objective of this research was to determine the effects of biochar and compost on soil hydro-physical properties, water use efficiency, monetary returns and yield of knolkhol (Brassica oleracea var. gongyloides L.) under sub-tropics of North West India. Compared with no-biochar, application of biochar significantly increased knolkhol yield by 7.8% and soil properties (infiltration rate, aggregate stability, maximum water holding capacity and hydraulic conductivity). Similarly, integration of compost significantly enhanced the soil water retention, aggregate stability, hydraulic conductivity and crop yield and gave highest infiltration rate, water retention, hydraulic conductivity and crop yield under M3 (50 % N through farm yard manure, +50 % N through vermicompost) treatment. Furthermore, synergetic positive effect of biochar and compost were noted for soil infiltration rate (4–38%), water retention (0.9–13.7%), aggregate stability (6–10.7%) and yield (6–11.9%) over the sole application of compost. Combined use of farm yard manure, and vermicompost accompanied by biochar resulted in highest net returns and B:C ratio. Biochar in combination with farm yard manure, and vermicompost can enhance soil hydraulic properties resulting in increased crop yield and maximum monetary returns under subtropical conditions.  相似文献   

12.
Lv  Jiaxing  Dong  Yan  Dong  Kun  Zhao  Qian  Yang  Zhixian  Chen  Ling 《Plant and Soil》2020,453(1-2):153-171
Plant and Soil - Better understanding of belowground interactions in agroforestry systems is crucial for the success of plant co-existence. Beyond root competition, associated arbuscular...  相似文献   

13.
Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.  相似文献   

14.
为探究根系分泌物C∶N对土壤养分循环及微生物活性的影响,本研究以黄土高原人工刺槐林为对象,在生境条件基本一致的15、25、35、45 a刺槐林地取原位土壤,通过模拟不同C∶N的根系分泌物(只添加N、C∶N=10、C∶N=50、C∶N=100和只添加C)添加至土壤,以去离子水作为对照,分析根系分泌物C∶N对土壤碳、氮、磷、pH值等理化特征和土壤呼吸的影响。结果表明: 1)有机碳含量与根系分泌物C∶N呈正相关,根系分泌物C∶N=10时土壤有机碳(SOC)分解较快,高根系分泌物C∶N(C∶N=100)能延缓SOC分解,而只添加C处理对SOC无显著影响。2)不同C∶N根系分泌物处理对全氮的影响不明显,碳添加能促进微生物对铵态氮的吸收,氮添加能促进铵态氮的硝化,随着根系分泌物C∶N增加,土壤中铵态氮含量下降。3)氮添加会导致土壤pH值下降,增加土壤全磷含量。4)刺槐林地土壤呼吸值与根系分泌物C∶N呈正相关,随着C∶N增加,根系分泌物对25和35 a人工刺槐林土壤呼吸的促进作用更显著。综上,根系分泌物C∶N值越高,对人工刺槐林土壤呼吸的促进作用越显著。研究结果进一步加深了对森林根系-土壤-微生物互作过程的认识。  相似文献   

15.
Plants exude a variety of substances through their external surfaces and from germinating seeds, some of which have an inhibitory action against plant pathogens. The aim of this study was the investigation and characterization of defense proteins present in exudates from roots of cowpea seedlings (Vigna unguiculata (L.) Walp.). Root exudates were collected from seedlings that were grown hydroponically in three different media, including, 100 mM sodium acetate buffer pH 4.5, water pH 6.0 and 100 mM sodium phosphate buffer pH 7.5. The proteins from these exudates were analyzed by SDS–PAGE and SDS–Tricine–PAGE and the presence of antimicrobial proteins in the exudates was investigated by immunological and enzymatic assays. Results showed that roots from cowpea seedlings contained -1,3-Glucanases, chitinases and lipid transfer proteins (LTPs), all of which may potentially function as plant defense proteins. Immunolocalization of one of these proteins, chitinase, revealed its presence in the xylem cell wall vessel elements. These exudates also demonstrated an inhibitory effect on the growth of the fungus, Fusarium oxysporum, in vitro. The results suggest that plant roots may exude a variety of proteins that may function to repress the growth of root pathogenic fungi.  相似文献   

16.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

17.
Extreme growing conditions inhibit restoration in sandpit mines. Co‐amendment of soil conditioners such as biochar, compost, and arbuscular mycorrhizal fungi (AMF) may alleviate these stresses and lead to a more successful restoration. We conducted a multiyear restoration experiment in a sandpit in Southern Ontario, Canada, following industrial‐scale grassland restoration protocols. The sandpit substrate was sand with low carbon (C) and nutrients. We tested the effect of biochar, compost, and AMF inoculum in two experiments (plant plugs vs. seed application). In the plant plug trial, we investigated the treatment effects on the growth of eight grassland plant species and colonization of plant roots by AMF over two growing seasons. We found that co‐amending soils with compost plus biochar (20 T/ha + 10 T/ha) was more beneficial than other amendment combinations. Amendments including AMF were not more beneficial to plant growth than those without AMF. In the seed application trial, direct inoculation of AMF in the field combined with high compost addition (20 T/ha or 40 T/ha) resulted in the highest plant cover compared to other treatment combinations. Our results indicate that co‐amending sandpit substrates with biochar, compost, and AMF are practical restoration tools that enhance grassland restoration.  相似文献   

18.
The dynamics of mesophilic and thermophilic bacterial population of compost was studied. The bacteria population in the compost ranged from 109 to 105 CFU g?1 and was found to be maximum during mesophilic phase, and then decreased during the thermophilic, the cooling and maturation phases. Assessment of culturable bacteria by 16S rDNA revealed phylogenetic lineage of different polymorphic class bacilli, γ, β-proteobacteria and actinobacteria. Bacterial isolates produced extracellular enzymes: proteases, cellulase, xylanase, pectinase, tannase and amylase. Among them, mesophilic bacteria exhibited xylanolytic (81.25 %) and cellulolytic (63 %) activity. Thermophilic bacteria showed cellulolytic (75 %) and xylanolytic (66.6 %) activity, but a few isolates also produced tannase and pectinase. All bacterial isolates were observed to cause inhibition of three isolates of Bacillus pumilus and one isolate each of Staphylococcus sciuri and Kocuria sp. The physiological effect of compost on shoot length, leaf size and fruit maturation of tomato have been evaluated; the compost (75 g/pot) improved these parameters as compared to known compost (SOM). The efficacy of compost and SOM on photochemistry of tomato leaves was studied, based on imaging-PAM of the chlorophyll fluorescence parameters. Fv/Fm and electron transport rate (ETR) were increased significantly in compost (75 g) amended pot within 30 days of growth. Likewise, highest Y (II) of photosystem II (PS II) yield was found in compost (75 g) pot in 15 days. The findings of this study proved that the compost comprising of various bacteria involved in degradation of substrates was found to be beneficial for enhancement of tomato growth and development.  相似文献   

19.
Summary The amounts of amino acids in seed exudates were generally higher than in root exudates of the same plant. The spectra and relative abundance of amino acids in both plants were similar but they were generally more abundant in cowpea exudates than in sorghum. Glutamic acid and alanine were the most abundant amino acids in the seed and root exudates of both plants. The proportions of the amino acids in the seed exudates were comparable to that stored in the seeds. Many of the major amino acids identified in the exudates were also found to support thein vitro growth ofFusarium spp. isolated from the rhizosphere and rhizoplane. This suggests that the amino acids exuded might contribute signficantly to Fusaria nutrition and its consequent predominance around the root. The significance of this pathogenesis is also discussed.  相似文献   

20.
Xie XM  Liao M  Yang J 《应用生态学报》2011,22(10):2718-2724
模拟根际根系分泌物梯度递减效应,研究了黑麦草根系分泌物剂量对污染土壤中芘降解特征和土壤微生物生态特征的影响.结果表明:污染土壤中芘残留量随根系分泌物添加剂量的增加呈现先下降后上升的非线性变化,达到最低芘残留量的添加剂量是总有机碳(TOC) 32.75 mg·kg-1,说明此浓度下根系分泌物显著促进了芘的降解;土壤微生物生物量碳和微生物熵的变化趋势与污染土壤中芘残留量变化趋势相反,表明土壤微生物与污染土壤 中芘残留量存在密切关系.芘污染土壤中微生物群落以细菌占主导地位,且细菌变化趋势与芘降解变化一致,表明芘以细菌降解为主,根系分泌物主要通过影响细菌数量,进而影响芘的降解.能催化有机物质脱氢反应的土壤微生物胞内酶——脱氢酶活性的变化与土壤微生物变化趋势一致,进一步证明微生物及其生物化学特性变化是污染土壤中芘残留量随根系分泌物添加剂量变化的生态机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号