首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cullin-RING E3 ubiquitin ligase (CRL) complex is known as the largest family of E3 ligases. The most widely characterized CRL, SCF complex (CRL1), utilizes CUL1 as a scaffold protein to assemble the complex components. To better understand CRL1-mediated cellular processes in rice, three CUL1 genes (OsCUL1s) were isolated in Oryza sativa. Although all OsCUL1 proteins exhibited high levels of amino acid similarities with each other, OsCUL1-3 had a somewhat distinct structure from OsCUL1-1 and OsCUL1-2. Basal expression levels of OsCUL1-3 were much lower than those of OsCUL1-1 and OsCUL1-2 in all selected samples, showing that OsCUL1-1 and OsCUL1-2 play predominant roles relative to OsCUL1-3 in rice. OsCUL1-1 and OsCUL1-2 genes were commonly upregulated in dry seeds and by ABA and salt/drought stresses, implying their involvement in ABA-mediated processes. These genes also showed similar expression patterns in response to various hormones and abiotic stresses, alluding to their functional redundancy. Expression of the OsCUL1-3 gene was also induced in dry seeds and by ABA-related salt and drought stresses, implying their participation in ABA responses. However, its expression pattern in response to hormones and abiotic stresses was somehow different from those of the OsCUL1-1 and OsCUL1-2 genes. Taken together, these findings suggest that the biological role and function of OsCUL1-3 may be distinct from those of OsCUL1-1 and OsCUL1-2. The results of expression analysis of OsCUL1 genes in this study will serve as a useful platform to better understand overlapping and distinct roles of OsCUL1 proteins and CRL1-mediated cellular processes in rice plants.  相似文献   

2.
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.  相似文献   

3.
Strigolactones (SLs) are important intrinsic growth regulators that control plant architecture by coordinating shoot and root development. Recent studies demonstrate that SL signals act via targeting the degradation protein DWARF53 (D53) family of chaperonin-like proteins. This process requires DWARF14 (D14) as strigolactones signal receptor and DWARF3 (D3) forming Skp-Cullin-F-box (SCF) complex as ubiquitin E3 ligase. Although the interactions of these signal components can be expected, where and how the SLs signalling occur within cells in a tissue-specific manner is still uncertain. In this study, we characterize a rice high-tillering dwarf mutant, ext.-M1B, displaying resistance to synthetic strigolactone mixture rac-GR24. Through genetic analysis, we find that ext.-M1B is a new allelic mutant of D3 with a nucleotide mutation resulting in a truncated protein of wide-type D3. We demonstrate that the mutation affects neither gene expression level nor the protein sub-cellular localization, whereas it disrupts the perception of SLs signal in ext.-M1B mutant. Moreover, we find that overexpression of D3 in wild type background causes no significant phenotype, but suppression of D3 by RNA interfering results in a clear phenocopy of SL mutants. By expressing fluorescent D3 fusion protein in rice, we first show that D3 is stable consistently in the nucleus with or without strigolactone treatment. Taken together, our data indicates that D3 encoding an F-box protein in nucleus, as a stable signal component response to strigolactone regulating rice shoot architecture.  相似文献   

4.
5.
6.
Despite the paraquat-resistant mutants that have been reported in plants, this study identified a novel A. thaliana mutant (pqr2) from an XVE inducible activation library based on its resistance to 2 μM paraquat. The pqr2 mutant exhibited a termination mutation in the exon of AT1G31830/PAR1/PQR2, encoded a polyamine uptake transporter AtPUT2/PAR1/PQR2. The PQR2 mutation could largely reduce superoxide accumulation and cell death in the pqr2 plants under paraquat treatment. Moreover, compared with wild type, the pqr2 mutant exhibited much reduced tolerance to putrescine, a classic polyamine compound, which confirmed that PQR2 encoded a defective polyamine transporter. Notably, co-treated with ABA and paraquat, both pqr2 mutant and wild type exhibited a lethal phenotype from seed germination, but the wild type like pqr2 mutant, could remain paraquat-resistance while co-treated with high dosage of Na2WO4, an ABA synthesis inhibitor. Gene expression analysis suggested that ABA signaling should widely regulate paraquat-responsive genes distinctively in wild type and pqr2 mutant. Hence, this study has for the first time reported about ABA negative effect on paraquat-resistance in A. thaliana, providing insight into the ABA signaling involved in the oxidative stress responses induced by paraquat in plants.  相似文献   

7.
8.

Key message

BPH1 acts as a substrate receptor of CRL3 complex and negatively regulates ABA-mediated cellular responses. The study on its function provides information that helps further understand the relationship between ABA signaling and UPS.

Abstract

Abscisic acid (ABA) plays a crucial role in a variety of cellular processes, including seed dormancy, inhibition of seedling growth, and drought resistance in plants. Cullin3-RING E3 ligase (CRL3) complex is a type of multi-subunit E3 ligase, and BTB/POZ protein, a component of CRL3 complex, functions as a receptor to determine a specific substrate. To elucidate the CRL3 complex that participates in ABA-mediated cellular processes, we first investigated ABA-inducible BTB/POZ genes based on data from the AtGenExpress Visualization Tool (AVT). We then isolated an ABA-inducible gene encoding a potential CRL3 substrate receptor in Arabidopsis, BPH1 (BTB/POZ protein hypersensitive to ABA 1). The isolate gene has a BTB/POZ domain and a NPH3 domain within its N-terminal and C-terminal region, respectively. Yeast two-hybrid and co-immunoprecipitation assays showed that BPH1 physically interacted with cullin3a, a scaffold protein of CRL3, suggesting that it functions as an Arabidopsis CRL3 substrate receptor. The functional mutation of BPH1 caused delayed seed germination in response to ABA and enhanced sensitivity by NaCl and mannitol treatments as ABA-related stresses. Moreover, bph1 mutants exhibited enhanced stomatal closure under ABA application and reduced water loss when compared with wild-type, implying their enhanced tolerance to drought stress. Based on the information from microarray/AVT data and expression analysis of various ABA-inducible genes between wild-type and bph1 plants following ABA treatments, we concluded loss of BPH1 resulted in hyper-induction of a large portion of ABA-inducible genes in response to ABA. Taken together, these results show that BPH1 is negatively involved in ABA-mediated cellular events.
  相似文献   

9.
Abscisic acid (ABA) regulates various plant physiological processes, especially participates in the plant responses to harsh environments. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis pathway. Here, a TaNCED with an 1 887-bp open reading frame was cloned from wheat, which encodes a peptide of 628 amino acids. A chloroplast transit peptide sequence was found at the N-terminus of the TaNCED protein. Multiple sequence alignments indicate that the TaNCED protein shared high similarities with other NCEDs from different species. Real-time quantitative PCR analysis shows that expression of TaNCED was strongly up-regulated by treatments with ABA, polyethylene glycol, and drought stress, and it was down-regulated during germination of the wheat seeds. Ectopic overexpression of the TaNCED gene in Arabidopsis resulted in an increase of endogenous ABA and free proline content. A lower water loss rate and stomatal conductance of leaves were found in the transgenic plants in comparison with the wild type. Subsequently, the transgenic plants displayed an enhanced tolerance to drought stress but delayed seed germination. These data provide evidence that the TaNCED might play a primary role in regulation of ABA content during water stress and seed dormancy.  相似文献   

10.
In this study, we examined the influence of UV-B radiation (280–320 nm) on ABA accumulation in 14-day-old Arabidopsis thaliana (L.) Heynh plants of wild type (WT), ethylene receptor mutant (etr1-1), and mutant with a constitutively active ethylene signal transduction pathway (ctr1-1). ABA content in nonirradiated WT plants was twice higher than in each mutant. UV-B irradiation caused dose-dependent ABA accumulation in WT plants. In the etr1-1 mutant, the amount of accumulated ABA was significantly less. In the ctr1-1 mutant, ABA content didn’t increase after UV-B irradiation. These data suggest that start of stress-induced ABA formation requires the adjustable ethylene signal pathway. In the ctr1-1 mutant, a constitutively active (nonadjustable) ethylene signal pathway blocks stress-induced ABA accumulation.  相似文献   

11.
12.
Plant leucine-rich repeats receptor-like kinases (LRR-RLKs) play key roles in plant growth, development, and responses to environmental stresses. However, the functions of LRR-RLKs in bryophytes are still not well documented. Here, a putative LRR-RLK gene, PnLRR-RLK, was cloned and characterized from the Antarctic moss Pohlia nutans. Phylogenetic analysis revealed that PnLRR-RLK protein was clustered with the Arabidopsis thaliana LRR XI family proteins. Subcellular localization analysis of PnLRR-RLK revealed that it was mainly localized on plasma membrane. The expression of PnLRR-RLK was induced by mock high salinity, cold, drought, and exogenously supplied abscisic acid (ABA) and methyl jasmonate (MeJA). Meanwhile, the overexpression of PnLRR-RLK showed an increased tolerance of transgenic Arabidopsis to salt and ABA stresses than that of the wild type (WT) plants. Furthermore, the expression levels of several salt tolerance genes (AtHKT1, AtSOS3, AtP5CS1, and AtADH1) and an ABA negatively regulating gene AtABI1 were significantly increased in transgenic plants. Meanwhile, the expression levels of ABA biosynthesis genes (AtNCED3, AtABA1, and AtAAO3) and ABA early response genes (AtMYB2, AtRD22, AtRD29A, and AtDREB2A) were decreased in transgenic Arabidopsis after salt stress treatment. Therefore, these results suggested that PnLRR-RLK might involve in regulating salt stress-related and ABA-dependent signaling pathway, thereby contribute to the salinity tolerance of the Antarctic moss P. nutans.  相似文献   

13.
14.
15.
16.
Protein phosphatase 2C clade A members are major signaling components in the ABA-dependent signaling cascade that regulates seed germination. To elucidate the role of PP2CA genes in germination of rice seed, we selected OsPP2C51, which shows highly specific expression in the embryo compared with other protein phosphatases based on microarray data. GUS histochemical assay confirmed that OsPP2C51 is expressed in the seed embryo and that this expression pattern is unique compared with those of other OsPP2CA genes. Data obtained from germination assays and alpha-amylase assays of OsPP2C51 knockout and overexpression lines suggest that OsPP2C51 positively regulates seed germination in rice. The expression of alpha-amylase synthesizing genes was high in OsPP2C51 overexpressing plants, suggesting that elevated levels of OsPP2C51 might enhance gene expression related to higher rates of seed germination. Analysis of protein interactions between ABA signaling components showed that OsPP2C51 interacts with OsPYL/RCAR5 in an ABA-dependent manner. Furthermore, interactions were observed between OsPP2C51 and SAPK2, and between OsPP2C51 and OsbZIP10 and we found out that OsPP2C51 can dephosphorylates OsbZIP10. These findings suggest the existence of a new branch in ABA signaling pathway consisting of OsPYL/RCAR-OsPP2C-bZIP apart from the previously reported OsPYL/RCAR-OsPP2C-SAPK-bZIP. Overall, our result suggests that OsPP2C51 is a positive regulator of seed germination by directly suppressing active phosphorylated OsbZIP10.  相似文献   

17.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

18.
19.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   

20.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号