首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Motility of the diatom, Phaeodactylum tricornutum   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Cells of Phaeodactylum tricornutum were precultured under axenic conditions in a full medium and then exposed to natural light conditions at various depths in the eutrophic lake „Meerfelder Maar”︁ (Eifel, FRG) for several days. After exposition the cells were characterized with respect to growth parameters, photosynthetic performance and xanthophyll cycle pigments. In order to test the resistance of the cells grown at different depths against photostress, the cells were illuminated with photoinhibitory light. The variable chlorophyll a-fluorescence and the oxygen quantum yield at a non-saturating light intensity were simultaneously measured after photostress and subsequent recovery. The xanthophyll cycle pigments and the content in α-tocopherol were monitored during photostress to get molecular information about the physiological reasons of light-stress resistance. The data give evidence that cells grown close to the surface show a faster decline in photosynthetic performance and a more efficient recovery than cells from lower depths. There is clear indication that under natural conditions when the light is fluctuating between optimal, sub- and supraoptimal intensities the photostress resistance is much higher than under conditions of the absence of light stress. The molecular basis for light stress resistance seems to be the pool size and the conversion kinetics of the xanthophyll cycle pigments and the capacity of the oxygen-scavenging system. The effect of in-situ light adaptation is discussed with respect to the assessment of the potential of the primary production.  相似文献   

4.
Genome properties of the diatom Phaeodactylum tricornutum   总被引:1,自引:0,他引:1  
Diatoms are a ubiquitous class of microalgae of extreme importance for global primary productivity and for the biogeochemical cycling of minerals such as silica. However, very little is known about diatom cell biology or about their genome structure. For diatom researchers to take advantage of genomics and post-genomics technologies, it is necessary to establish a model diatom species. Phaeodactylum tricornutum is an obvious candidate because of its ease of culture and because it can be genetically transformed. Therefore, we have examined its genome composition by the generation of approximately 1,000 expressed sequence tags. Although more than 60% of the sequences could not be unequivocally identified by similarity to sequences in the databases, approximately 20% had high similarity with a range of genes defined functionally at the protein level. It is interesting that many of these sequences are more similar to animal rather than plant counterparts. Base composition at each codon position and GC content of the genome were compared with Arabidopsis, maize (Zea mays), and Chlamydomonas reinhardtii. It was found that distribution of GC within the coding sequences is as homogeneous in P. tricornutum as in Arabidopsis, but with a slightly higher GC content. Furthermore, we present evidence that the P. tricornutum genome is likely to be small (less than 20 Mb). Therefore, this combined information supports the development of this species as a model system for molecular-based studies of diatom biology. The nucleotide sequence data reported has been deposited in GenBank Nucleotide Sequence Database (dbEST section) under accession nos. BI306757 through BI307753.  相似文献   

5.
6.
Diatoms are one of the most important constituents of phytoplankton communities in aquatic environments, but in spite of this, only recently have large-scale diatom-sequencing projects been undertaken. With the genome of the centric species Thalassiosira pseudonana available since mid-2004, accumulating sequence information for a pennate model species appears a natural subsequent aim. We have generated over 12,000 expressed sequence tags (ESTs) from the pennate diatom Phaeodactylum tricornutum, and upon assembly into a nonredundant set, 5,108 sequences were obtained. Significant similarity (E < 1E-04) to entries in the GenBank nonredundant protein database, the COG profile database, and the Pfam protein domains database were detected, respectively, in 45.0%, 21.5%, and 37.1% of the nonredundant collection of sequences. This information was employed to functionally annotate the P. tricornutum nonredundant set and to create an internet-accessible queryable diatom EST database. The nonredundant collection was then compared to the putative complete proteomes of the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the centric diatom T. pseudonana. A number of intriguing differences were identified between the pennate and the centric diatoms concerning activities of relevance for general cell metabolism, e.g. genes involved in carbon-concentrating mechanisms, cytosolic acetyl-Coenzyme A production, and fructose-1,6-bisphosphate metabolism. Finally, codon usage and utilization of C and G relative to gene expression (as measured by EST redundance) were studied, and preferences for utilization of C and CpG doublets were noted among the P. tricornutum EST coding sequences.  相似文献   

7.
B. N. Patel  M. J. Merrett 《Planta》1986,169(2):222-227
Air-grown cells of the marine diatom Phaeodactylum tricornutum showed only 10% of the carbonic-anhydrase activity of air-grown Chlamydomonas reinhardtii. Measurement of carbonic-anhydrase activity using intact cells and cell extracts showed all activity was intracellular in Phaeodactylum. Photosynthetic oxygen evolution at constant inorganic-carbon concentration but varying pH showed that exogenous CO2 was poorly utilized by the cells. Sodium ions increased the affinity of Phaeodactylum for HCO 3 - and even at high HCO 3 - concentrations sodium ions enhanced HCO 3 - utilization. The internal inorganic-carbon pool (HCO 3 - +CO2] was measured using a silicone-oil-layer centrifugal filtering technique. The internal [HCO 3 - +CO2] concentration never exceeded 15% of the external [HCO 3 - +CO2] concentration even at the lowest external concentrations tested. It is concluded that an internal accumulation of inorganic carbon relative to the external medium does not occur in P. tricornutum.Abbreviation Hepes 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid  相似文献   

8.
9.
Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum   总被引:1,自引:0,他引:1  
Research into diatom biology has now entered the post-genomics era, following the recent completion of the Thalassiosira pseudonana and Phaeodactylum tricornutum whole genome sequences and the establishment of Expressed Sequence Tag (EST) databases. The thorough exploitation of these resources will require the development of molecular tools to analyze and modulate the function of diatom genes in vivo. Towards this objective, we report here the identification of several reference genes that can be used as internal standards for gene expression studies by quantitative real-time PCR (qRT-PCR) in P. tricornutum cells grown over a diel cycle. In addition, we describe a series of diatom expression vectors based on Invitrogen Gateway technology for high-throughput protein tagging and overexpression studies in P. tricornutum. We demonstrate the utility of the diatom Destination vectors for determining the subcellular localization of a protein of interest and for immunodetection. The availability of these new resources significantly enriches the molecular toolbox for P. tricornutum and provides the diatom research community with well defined high-throughput methods for the analysis of diatom genes and proteins in vivo.  相似文献   

10.
Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called “true” TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1.  相似文献   

11.
三角褐指藻(Phaeodactylum tricornutum)是开展微藻生物柴油研究的理想材料。克隆了内源fcp基因簇的多个调控序列(启动子、终止子),构建了包括fcpB启动子-bar基因-fcpA终止子、以及fcpA启动子-多克隆位点(MCS)-fcpA终止子两个表达盒的通用转化载体pfcpA-MCS/fcpB-Bar,其特征是以bar基因作为选择标记,MCS区方便插入一至多个目的基因。新载体可用于三角褐指藻的重组蛋白表达、或油脂代谢相关基因的功能验证和代谢调控研究。  相似文献   

12.
Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in oceans over the past 30 million years. They are of interest as potential feedstocks for sustainable biofuels. Maximizing production of these feedstocks will require genetic modifications and an understanding of algal metabolism. These processes may benefit from genome‐scale models, which predict intracellular fluxes and theoretical yields, as well as the viability of knockout and knock‐in transformants. Here we present a genome‐scale metabolic model of a fully sequenced and transformable diatom: Phaeodactylum tricornutum. The metabolic network was constructed using the P. tricornutum genome, biochemical literature, and online bioinformatic databases. Intracellular fluxes in P. tricornutum were calculated for autotrophic, mixotrophic and heterotrophic growth conditions, as well as knockout conditions that explore the in silico role of glycolytic enzymes in the mitochondrion. The flux distribution for lower glycolysis in the mitochondrion depended on which transporters for TCA cycle metabolites were included in the model. The growth rate predictions were validated against experimental data obtained using chemostats. Two published studies on this organism were used to validate model predictions for cyclic electron flow under autotrophic conditions, and fluxes through the phosphoketolase, glycine and serine synthesis pathways under mixotrophic conditions. Several gaps in annotation were also identified. The model also explored unusual features of diatom metabolism, such as the presence of lower glycolysis pathways in the mitochondrion, as well as differences between P. tricornutum and other photosynthetic organisms.  相似文献   

13.
Chloroplasts were isolated from the diatom Phaeodactylum tricornutumby French press treatment and centrifugation. Electron micrographsof the isolated chloroplasts indicated that they lacked mostof the envelope membranes but retained the lamellar structurecharacteristic of the diatom chloroplast; three thylakoids weregrouped to form a band which transversed the chloroplast. Agirdle lamella also composed of three thylakoids surroundedthese transversal lamellae. The isolated chloroplasts were activein photosynthetic electron transport reactions including theHill reaction, the Mehler reaction and the system I reaction. (Received May 18, 1979; )  相似文献   

14.

Background

Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms.

Results

Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions.

Conclusions

P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-698) contains supplementary material, which is available to authorized users.  相似文献   

15.
Photosynthesis Research - The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the...  相似文献   

16.
Fluorescence transients were investigated with the diatom Phaeodactylumtricornutum. Supplementary experiments were done with Chaetocerossp. Under weak excitation ({small tilde}103 erg/cm2sec), fluorescencetransients were induced simply by die oxidation-reduction reactionof Q, the primary reductant of photosystem II. The action spectraindicated that the electron transfer components between thetwo photosystems were in the most reduced state when fucoxanthinwas excited. The transients were observed with the 681 run emissionand with the 707 nm emission at room temperature. At –196°C,induction due to the reduction of Q. appeared both at the 681and 707 nm emissions. Similar results were also obtained withChaetoceros sp. Under strong excitation (104–105 erg/cm2-sec), the fluorescencetransients due to the interconversion between States 1 and 2of die pigment system (cf. ref. 27, 29) were observed. The transientswere induced by die alternate excitation of chlorophyll a andfucoxanthin or chlorophyll c. Conversion from State 2 to State1 was inhibited by DNP and CCCP, indicating that die processwas energy-dependent. Fluorescence spectra at –196°Cwere not altered by die state-conversion of die pigment system. These results suggest diat all die fluorescence bands whichappeared at room temperature and at –196°C were dueto die chlorophyll a of pigment system II in Phaeodactylum andChaetoceros. (Received September 7, 1972; )  相似文献   

17.
18.
In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep up with the rate of charge separations. Such cyclic electron transfer had been inferred from oxygen measurements suggesting that some of its intermediates can be reduced in the dark and can subsequently compete with water as an electron donor to Photosystem II upon illumination. Here, the proposed activation of cyclic electron transfer by illumination is confirmed and shown to require only a second. On the other hand the dark reduction of its intermediates, specifically of tyrosine Y(D), the only Photosystem II component known to compete with water oxidation, is ruled out. It appears that the cyclic electron transfer pathway can be fully opened by reduction of the plastoquinone pool in the dark. Oxygen evolution reappears after partial oxidation of the pool by Photosystem I, but the pool itself is not involved in cyclic electron transfer.  相似文献   

19.
20.
Prior analysis of inorganic carbon (Ci) fluxes in the diatom Phaeodactylum tricornutum has indicated that transport of Ci into the chloroplast from the cytoplasm is the major Ci flux in the cell and the primary driving force for the CO2 concentrating mechanism (CCM). This flux drives the accumulation of Ci in the chloroplast stroma and generates a CO2 deficit in the cytoplasm, inducing CO2 influx into the cell. Here, the “chloroplast pump” model of the CCM in P. tricornutum is formalized and its consistency with data on CO2 and HCO3 ? uptake rates, carbonic anhydrase (CA) activity, intracellular Ci concentration, intracellular pH, and RubisCO characteristics is assessed. The chloroplast pump model can account for the major features of the data. Analysis of photosynthetic and Ci uptake rates as a function of external Ci concentration shows that the model has the most difficulty obtaining sufficiently low cytoplasmic CO2 concentrations to support observed CO2 uptake rates at low external Ci concentrations and achieving high rates of photosynthesis. There are multiple ways in which model parameters can be varied, within a plausible range, to match measured rates of photosynthesis and CO2 uptake. To increase CO2 uptake rates, CA activity can be increased, kinetic characteristics of the putative chloroplast pump can be enhanced to increase HCO3 ? export, or the cytoplasmic pH can be raised. To increase the photosynthetic rate, the permeability of the pyrenoid to CO2 can be reduced or RubisCO content can be increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号