共查询到20条相似文献,搜索用时 15 毫秒
1.
The redox enzyme violaxanthin de-epoxidase (VDE) was found to be sensitive to pepstatin, a specific inhibitor of aspartic protease. The inhibition was similar to that of aspartic protease in that it was reversible and accompanied by the protonation of the enzyme. Of the two peaks of VDE appearing on anion exchange chromatography, VDE-I predominated at pH 7.2. On lowering the pH of the chromatography, VDE-I decreased and VDE-II increased. Furthermore, re-chromatography of either peak yielded both peaks. These results suggest that VDE-I and VDE-II are interconvertible depending on pH, and thus, they represent the de-protonated and protonated forms of the enzyme, respectively. Presumably the protonation-induced structural change of the enzyme is responsible for the interaction with pepstatin, and also with substrate. 相似文献
2.
Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding 总被引:3,自引:0,他引:3
Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity. 相似文献
3.
Plants are often exposed to saturating light conditions, which can lead to oxidative stress. The carotenoid zeaxanthin, synthesized from violaxanthin by Violaxanthin De-Epoxidase (VDE) plays a major role in the protection from excess illumination. VDE activation is triggered by a pH reduction in the thylakoids lumen occurring under saturating light. In this work the mechanism of the VDE activation was investigated on a molecular level using multi conformer continuum electrostatic calculations, site directed mutagenesis and molecular dynamics. The pK(a) values of residues of the inactive VDE were determined to identify target residues that could be implicated in the activation. Five such target residues were investigated closer by site directed mutagenesis, whereas variants in four residues (D98, D117, H168 and D206) caused a reduction in enzymatic activity indicating a role in the activation of VDE while D86 mutants did not show any alteration. The analysis of the VDE sequence showed that the four putative activation residues are all conserved in plants but not in diatoms, explaining why VDE in these algae is already activated at higher pH. Molecular dynamics showed that the VDE structure was coherent at pH 7 with a low amount of water penetrating the hydrophobic barrel. Simulations carried out with the candidate residues locked into their protonated state showed instead an increased amount of water penetrating the barrel and the rupture of the H121-Y214 hydrogen bond at the end of the barrel, which is essential for VDE activation. These results suggest that VDE activation relies on a robust and redundant network, in which the four residues identified in this study play a major role. 相似文献
4.
Charlotte Eva Bratt Per-Ola Arvidsson Marie Carlsson Hans-Erik Åkerlund 《Photosynthesis research》1995,45(2):169-175
The activity of violaxanthin de-epoxidase has been studied both in isolated thylakoids and after partial purification, as a function of pH and ascorbate concentration. We demonstrate that violaxanthin de-epoxidase has a Km for ascorbate that is strongly dependent on pH, with values of 10, 2.5, 1.0 and 0.3 mM at pH 6.0, 5.5, 5.0 and 4.5, respectively. These values can be expressed as a single Km±0.1±0.02 mM for the acid form of ascorbate. Release of the protein from the thylakoids by sonication was also found to be strongly pH dependent with a cooperativity of 4 with respect to protons and with an inflexion point at pH 6.7. These results can explain some of the discrepancies reported in the literature and provide a more consistent view of zeaxanthin formation in vivo. 相似文献
5.
The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase 总被引:1,自引:0,他引:1
Vieler A Scheidt HA Schmidt P Montag C Nowoisky JF Lohr M Wilhelm C Huster D Goss R 《Biochimica et biophysica acta》2008,1778(4):1027-1034
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures. 相似文献
6.
Astrid Vieler Holger A. Scheidt Cindy Montag Martin Lohr Daniel Huster Reimund Goss 《生物化学与生物物理学报:生物膜》2008,1778(4):1027-1034
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using 31P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (Lβ) to liquid-crystalline (Lα) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the Lα to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the Lα phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures. 相似文献
7.
Key message
PeVDE was expressed primarily in bamboo leaves, which was up-regulated under high light. The protein encoded by PeVDE had enzyme activity of catalyzing violaxanthin (V) to zeaxanthin (Z) through antheraxanthin (A) as assay shown in vitro.Abstract
Violaxanthin de-epoxidase (VDE), a key enzyme of xanthophyll cycle, catalyzes conversion from violaxanthin (V) to zeaxanthin (Z) through antheraxanthin (A) to protect photosynthesis apparatus. A cDNA, PeVDE, encoding a VDE was isolated from bamboo (Phyllostachys edulis) by RT-PCR and RACE methods. PeVDE is 1,723 bp and contains an ORF encoding 451 amino acids, with a transit peptide of 103 amino acids. The mature protein is deduced to have 348 amino acids with a calculated molecular weight of 39.6 kDa and a theoretic isoelectric point of 4.5. Semi-quantitative RT-PCR assay indicated that the highest expression level of PeVDE was in leaf, which agreed with the accumulation pattern of PeVDE protein. Real time PCR results showed that PeVDE was up-regulated and reached the highest level after the treatment (1,200 μmo1 m?2 s?1) for 2 h, then decreased and kept at the level similar to that of 0.5 h after treatment for 8 h. To investigate the function of PeVDE, mature protein was heterologously expressed in Escherichia coli and the enzymatic activity assay was carried out using V as substrate. The pigments that formed in the reaction mixture were extracted and analyzed by HPLC method. Besides V, A and Z were detected in the reaction mixture, which indicated that the recombinant protein exhibited enzymatic activity of catalyzing V into Z through A. This study indicates that PeVDE functions through regulating the components of xanthophyll cycle, which might be one of the critical factors that contribute to the growth of bamboo under naturally varying light conditions. 相似文献8.
The release of ligand from the low-density lipoprotein receptor (LDLR) has been postulated to involve a "histidine switch"-induced intramolecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescently tagged variant apolipoprotein E N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp-null apoE3-NT. In binding experiments with wild-type (WT) sLDLR, FRET-dependent AEDANS fluorescence decreased as the pH was lowered. To investigate the role of His190, His562, and His586 in sLDLR in pH-dependent ligand binding and discharge, site-directed mutagenesis studies were performed. Compared to WT sLDLR, triple His --> Ala mutant sLDLR displayed attenuated pH-dependent ligand binding and a decreased level of ligand release as a function of low pH. When these His residues were substituted for Lys, the positively charged side chain of which does not ionize over this pH range, ligand binding was nearly abolished at all pH values. When sequential His to Lys mutants were examined, the evidence suggested that His562 and His586 function cooperatively. Whereas the sedimentation coefficient for WT sLDLR increased when the pH was reduced from 7 to 5, no such change occurred in the case of the triple Lys mutant receptor or a His562Lys/His586Lys double mutant receptor. The data support the existence of a cryptic, histidine side chain ionization-dependent alternative ligand that modulates ligand discharge via conformational reorganization. 相似文献
9.
The xanthophyll cycle is one of the mechanisms protecting the photosynthetic apparatus against the light energy excess. Its action is still not well understood on the molecular level.Our model makes it possible to follow independently the kinetics of the two de-epoxidation steps occurring in the xanthophyll cycle: the conversion of violaxanthin into antheraxanthin and the conversion of antheraxanthin into zeaxanthin. Using a simple form of the transition rates of these two conversions, we model the time evolution of the concentration pattern of violaxanthin, antheraxanthin and zeaxanthin during the de-epoxidation process. The model has been applied to describe the reactions of de-epoxidation in a system of liposome membranes composed of phosphatidylcholine and monogalactosyldiacylglycerol. Results obtained within the model fit very well with the experimental data. Values of the transition probabilities of the violaxanthin conversion into antheraxanthin and the antheraxanthin conversion into zeaxanthin calculated by means of the model indicate that the first stage of the de-epoxidation process is much slower than the second one. 相似文献
10.
Photoreduction with a 5-deazaflavin as the catalyst was used to convert flavodoxins from Desulfovibrio vulgaris, Megasphaera elsdenii, Anabaena PCC 7119, and Azotobacter vinelandii to their hydroquinone forms. The optical spectra of the fully reduced flavodoxins were found to vary with pH in the pH range of 5.0-8.5. The changes correspond to apparent pKa values of 6.5 and 5.8 for flavodoxins from D. vulgaris and M. elsdenii, respectively, values that are similar to the apparent pKa values reported earlier from the effects of pH on the redox potential for the semiquinone-hydroquinone couples of these two proteins (7 and 5.8, respectively). The changes in the spectra resemble those occurring with the free two-electron-reduced flavin for which the pKa is 6.7, but they are red-shifted compared with those of the free flavin. The optical changes occurring with flavodoxins from D. vulgaris and A. vinelandii flavodoxins are larger than those of free reduced FMN. The absorbance of the free and bound flavin increases in the region of 370-390 nm (Delta epsilon = 1-1.8 mM-1 cm-1) with increases of pH. Qualitatively similar pH-dependent changes occur when FMN in D. vulgaris flavodoxin is replaced by iso-FMN, and in the following mutants of D. vulgaris flavodoxin in which the residues mutated are close to the isoalloxazine of the bound flavin: D95A, D95E, D95A/D127A, W60A, Y98S, W60M/Y98W, S96R, and G61A. The 13C NMR spectrum of reduced D. vulgaris [2,4a-13C2]FMN flavodoxin shows two peaks. The peak due to C(4a) is unaffected by pH, but the peak due to C(2) broadens with decreasing pH; the apparent pKa for the change is 6.2. It is concluded that a decrease in pH induces a change in the electronic structure of the reduced flavin due to a change in the ionization state of the flavin, a change in the polarization of the flavin environment, a change in the hydrogen-bonding network around the flavin, and/or possibly a change in the bend along the N(5)-N(10) axis of the flavin. A change in the ionization state of the flavin is the simplest explanation, with the site of protonation differing from that of free FMNH-. The pH effect is unlikely to result from protonation of D95 or D127, the negatively charged amino acids closest to the flavin of D. vulgaris flavodoxin, because the optical changes observed with alanine mutants at these positions are similar to those occurring with the wild-type protein. 相似文献
11.
12.
Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts 总被引:3,自引:0,他引:3
The presence of an acidic lumen and the xanthophylls, zeaxanthin and antheraxanthin, are minimal requirements for induction of non-radiative dissipation of energy in the pigment bed of Photosystem II. We recently reported that ascorbate, which is required for formation for these xanthophylls, also can mediate the needed lumen acidity through the Mehler-peroxidase reaction [Neubauer and Yamamoto (1992) Plant Physiol 99: 1354–1361]. It is demonstrated that in non-CO2-fixing intact chloroplasts and thylakoids of Lactuca sativa, L. c.v. Romaine, the ascorbate available to support de-epoxidase activity is influenced by membrane barriers and the ascorbate-consuming Mehler-peroxidase reaction. In intact chloroplasts, this results in biphasic kinetic behavior for light-induced de-epoxidation. The initial relatively high activity is due to ascorbate preloaded into the thylakoid before light-induction and the terminal low activity due to limiting ascorbate from the effects of chloroplast membranes barriers and a light-dependent process. A five-fold difference between the initial and final activities was observed for light-induced de-epoxidation in chloroplasts pre-incubated with 120 mM ascorbate for 40 min. The light-dependent activity is ascribed to the competitive use of ascorbic acid by ascorbate peroxidase in the Mehler-peroxidase reaction. Thus, stimulating ascorbic peroxidase with H2O2 transiently inhibited de-epoxidase activity and concomitantly increased photochemical quenching. Also, the effects inhibiting ascorbate peroxidase with KCN, and the KM values for ascorbate peroxidase and violaxanthin de-epoxidase of 0.36 and 3.1 mM, respectively, support this conclusion. These results indicate that regulation of xanthophyll-dependent non-radiative energy dissipation in the pigment bed of Photosystem II is modulated not only by lumen acidification but also by ascorbate availability.Abbreviations APO
ascorbate peroxidase
- MP
Mehler ascorbate-peroxidase
- NIG
nigericin
- NPQ
non-photochemical quenching
- Fo
dark fluorescence
- F
fluorescence at any time
- FM
maximal fluorescence of the (dark) non-energized state
- FM
maximal fluorescence of the energized state
- qP
coefficient for photochemical fluorescence quenching
- VDE
violaxanthin de-epoxidase
-
k
first-order rate constant for violaxanthin de-epoxidase activity 相似文献
13.
14.
15.
Violaxanthin de-epoxidase (VDE) was purified from thylakoid membranes of spinach by conventional column chromatography in the presence of Tween 20. The neutral detergent was necessary to prevent non-specific interaction of VDE with column resins. In anion-exchange chromatography on Mono Q, VDE appeared in two peaks. Both peaks exhibited a polypeptide of 41 kDa when fully reduced with 5 mM dithiothreitol. Re-chromatography of either peak gave rise to both peaks, suggesting that the two forms of VDE are interconvertible. VDE characteristically changed its electrophoretic mobility depending on the concentration of dithiothreitol with which the protein was treated. When non-reduced, it showed two polypeptides of 43 and 42 kDa. These polypeptides moved down to the position of 40 kDa, and then up to the position of 41 kDa, along with the increase in the dithiothreitol concentration from 0 to 2 mM. These findings suggest that VDE has more than one disulfide bond and takes multiple forms depending on the extent of the reduction. Studies with various types of protein-modifying reagent revealed that VDE is sensitive to pepstatin A, a specific inhibitor of aspartic protease. This finding suggests that the reaction center of VDE contains a reactive aspartic acid residue(s). 相似文献
16.
pH-dependent structural changes at the Heme-Copper binuclear center of cytochrome c oxidase
下载免费PDF全文

The resonance Raman spectra of the aa3 cytochrome c oxidase from Rhodobacter sphaeroides reveal pH-dependent structural changes in the binuclear site at room temperature. The binuclear site, which is the catalytic center of the enzyme, possesses two conformations at neutral pH, assessed from their distinctly different Fe-CO stretching modes in the resonance Raman spectra of the CO complex of the fully reduced enzyme. The two conformations (alpha and beta) interconvert reversibly in the pH 6-9 range with a pKa of 7.4, consistent with Fourier transform infrared spectroscopy measurements done at cryogenic temperatures (D.M. Mitchell, J.P. Sapleigh, A.M.Archer, J.O. Alben, and R.B.Gennis, 1996, Biochemistry 35:9446-9450). It is postulated that the different structures result from a change in the position of the Cu(B) atom with respect to the CO due to the presence of one or more ionizable groups in the vicinity of the binuclear center. The conserved tyrosine residue (Tyr-288 in R. sphaeroides, Tyr-244 in the bovine enzyme) that is adjacent to the oxygen-binding pocket or one of the histidines that coordinate Cu(B) are possible candidates. The existence of an equilibrium between the two conformers at physiological pH and room temperature suggests that the conformers may be functionally involved in enzymatic activity. 相似文献
17.
Sarkkarai Raja Singh Subash Prakash Gurusamy Muneeswaran Seenivasan Rajesh Kaliappan Muthukumar Veerapandy Vasu 《Molecular simulation》2013,39(6):459-467
Protein tyrosine nitration is well-established post-translational modification occurring in a number of diseases, viz. neurodegenerative, cardiovascular diseases, ageing, etc. Tyrosine-67 (Tyr-67) nitration of cytochrome c (cyt c) was observed under oxidative stress affecting its structure and electron transfer properties. Hence, in this study, molecular dynamics (MD) simulations were carried out at room temperature to investigate the structural and conformational changes in the nitrated cyt c's. MD results revealed that the bond between FE (Heme-105) and S (Met-80) considerably weakened, radius of gyration, backbone and Cα root-mean-square deviations decreased and hydrogen bonding increased in the nitrated cyt c's relative to wild type (WT) cyt c. Ramachandran plot analysis revealed that N- and C-terminal helices also affected by nitration at CE2 carbon atom. Furthermore, essential dynamics analysis showed that amplitude of concerted motion decreased in the nitrated cyt c's, perhaps due to the increase in the hydrogen bonding interaction. Taken together, the structural and conformational changes in the active site Tyr-67 nitrated cyt c may have implications in the loss of electron/proton transfer and gain of apoptotic properties. 相似文献
18.
Changes in the quantities of violaxanthin de-epoxidase,xanthophylls and ascorbate in spinach upon shift from low to high light 总被引:8,自引:0,他引:8
Zeaxanthin, a carotenoid in the xanthophyll cycle, has been suggested to play a role in the protection against photodestruction. We have studied the importance of the parameters involved in zeaxanthin formation by comparing spinach plants grown in low light (100 to 250 mol m-2 s-1) to plants transferred to high light (950 mol m-2 s-1). Different parameters were followed for a total of 11 days. Our experiments show that violaxanthin de-epoxidase decreased between 15 and 30%, the quantity of xanthophyll cycle pigments doubled to 100 mmol (mol Chl)-1, corresponding to 27 mol m-2, and the rate of violaxanthin to zeaxanthin conversion was doubled. Lutein and neoxanthin increased from 50 to 71 mol m-2 and from 16 to 23 mol m-2, respectively. On a leaf area basis, chlorophyll and -carotene levels first decreased and then after 4 days increased. The chlorophyll a/b ratio was unchanged. The quantity of ascorbate was doubled to 2 mmol m-2, corresponding to an estimated increase in the chloroplasts from 25 to 50 mM. In view of our data, we propose that the increase in xanthophyll cycle pigments and ascorbate only partly explain the increased rate of conversion of violaxanthin to zeaxanthin, but the most probable explanation of the faster conversion is an increased accessibility of violaxanthin in the membrane. 相似文献
19.
Ruijter E Montironi R van de Kaa C Schalken J 《Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology》2001,23(1):67-88
The epidemiologic characteristics of prostate cancer (PCa) have been recognized for several decades. It is of great importance to understand the factors responsible for prostate carcinogenesis, why some carcinomas remain "clinically silent" during life, whereas other tumors progress to present clinically and may lead to PCa-related death. A better understanding of these mechanisms in molecular genetic terms should point to more rational approaches to disease prevention, intervention and treatment. The aim of this review is to provide a comprehensive overview of the current state of knowledge regarding the molecular alterations of PCa. 相似文献
20.
The protein moiety of squid (Watasenia scintillans) rhodopsin has been shown to have a molecular weight of 46 800 by means of amino acid analysis. This value was comparable to the value (51 000) obtained from SDS-polyacrylamide gel electrophoresis. After the squid eyes were incubated at 10 degrees C for 8 days, the rhodopsin showed a molecular weight of 39 000 on electrophoresis. The smaller molecular weight was ascertained by amino acid analysis of the rhodopsin; and may result from autolysis by the lysosomal enzyme. The rhodopsin in rhabdomeric membranes and in detergent solution was treated with chymotrypsin, papain or subtilisin. These enzymes first produced the 39 000 dalton rhodopsin and then cleaved this into the 25 000 and 14 000 dalton peptides without bleaching. The rhodopsin was attacked by proteases and readily lost an approx. 12 000 dalton peptide portion. This portion included the COOH-terminal and was rich in glutamic acid, proline, glycine, alanine and tyrosine residues. 相似文献