首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of fucalean canopy species and dominant understory macroalgae on algal colonization was investigated to evaluate whether layering contributes to patterns in algal diversity. Patterns in recruitment were compared among total-clearing, understory-removal, canopy-removal, and undisturbed plots (plot area = 0.25 m2), using a randomized block design in depths <10 m and 10–20 m at Woody Island, Western Australia. To evaluate if propagules were available in the water column above the canopy layer, settlement plates (plate area = 0.04 m2) were deployed in depths <10 m, 10–20 m, and >20 m. A total of 198 macroalgal species was recorded. Biomass of the understory species Osmundaria prolifera Lamouroux and Botryocladia sonderi Silva was similar between canopy-removal and undisturbed plots. Diversity of macroalgae was similar in the presence and absence of a canopy layer. Taxa found in the canopy showed different patterns in recruitment. Cystoseiraceae recruited predominantly in total-clearings in both depth strata. Sargassaceae recruited most abundantly in depths <10 m. Density of canopy taxa on settlement plates was similar with depth (20–30 juveniles per plate), and juveniles were mainly Cystoseiraceae. In contrast to kelp beds or forests, patterns in algal colonization appeared to be maintained by environmental factors or processes other than the direct effects of layering in the subtidal fucoid-dominated assemblages at Woody Island. Handling editor: K. Martens  相似文献   

2.
Abstract. The structure and composition of a cool-temperate old-growth beech (Fagus crenata) - dwarf bamboo (Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern.  相似文献   

3.
S. Yamamoto 《Plant Ecology》1996,127(2):203-213
Gap regeneration of major tree species was examined, based on the pattern of gap phase replacement, in primary old-growth stands of warm-temperate, cool-temperate and subalpine forests, Japan. Using principal component analysis, the gap-regeneration behavior of major tree species could be divided into three guilds and that of Fagus crenata (monodominant species of cool-temperate forests). The criteria used for this division were total abundance of canopy trees and regenerations and relative abundance of regenerations to canopy trees. The gap-regeneration behavior of species in the first guild was that canopy trees regenerate in gaps from seedlings or saplings recruited before gap formation; they had higher total abundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of F. crenata was same as species in the first guild, but F. crenata had less abundant regenerations relative to its canopy trees. Species in the second guild had lower total abundance and less abundant regenerations to their canopy trees. The guild contained species whose canopy trees regenerate in gaps from seedlings or saplings recruited after gap formation or regenerate following largescale disturbance. The third guild consisted of species with lower total aboundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of some species in this guild was that trees regenerate in gaps from seedlings or saplings recruited before gap formation, and grow, mature, and die without reaching the canopy layer, while the gap-regeneration behavior of other species was same as that of species in the first guild or F. crenata. Major tree species of subalpine forests were not present in the third guild.  相似文献   

4.
1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass. 2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1 ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground. 3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others. 4. Small‐scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.  相似文献   

5.
A field experiment was devised to test whether meiofauna that colonised mimic pneumatophores (artificial substrates) resembled the assemblage on adjacent live pneumatophores in three randomly chosen intertidal, estuarine sites. The experiment showed that the close proximity of particular biota on living pneumatophores did not reliably influence subsequent development of assemblages upon mimic pneumatophores within a scale of 10 m during a colonisation period of less than 20 weeks. There was some convergence of the composition of the colonising assemblage of meiofauna on mimic pneumatophores with the local assemblages in sites dominated by barnacles, or where the natural pneumatophores were free from macroscopic epibionts. However, tychopelagic meiofauna from algal epiphytes did not significantly colonise mimic pneumatophores during the 20-week trial, probably due a lack of growing algae. During the conditioning phase suspended in water at a marine site 20 km from the mangroves, mimic pneumatophores acquired an assemblage of meiofauna different from the estuarine assemblage that colonised mimics following implantation in the estuarine mudflat. Enhanced colonisation rates of mimics in suspended bags at the conditioning site may be explained by the absence of benthic macroinvertebrates, and the lack of intertidal exposure. Biofilms aged 2, 7, and 11 weeks had no consistent, different effect on the subsequent colonisation of meiofauna. We conclude that divergence of phytal-based assemblages of meiofauna depends upon the amount of coverage, as well as the type, of fouling macro-epibionts on the pneumatophores. Meiofaunal assemblages on artificial substrates after 20 weeks colonisation displayed less intrinsic patchiness than mature phytal assemblages on natural pneumatophores, and so present a potentially useful way of improving the power of biomonitoring applications using meiofauna.  相似文献   

6.
田俊霞  魏丽萍  何念鹏  徐丽  陈智  侯继华 《生态学报》2018,38(23):8383-8391
自然界中,森林植物叶片的生长随树冠高度呈现明显的垂直分布现象;然而,有关叶片性状随着树冠垂直高度增加的变化规律仍不清楚。为了更好地揭示植物叶片对光环境变化的适应策略以及对资源的利用能力,有必要深入探讨叶片性状与冠层高度的定量关系及其内在调控机制。以中国广泛分布的温带针阔混交林为对象,选取8种主要树种为研究对象(白桦、蒙古栎、水曲柳、大青杨、色木槭、千金榆、核桃楸和红松),通过测定这些物种9个冠层高度的叶片比叶面积(SLA)、叶片干物质含量(LDMC)、叶片氮含量(N)、叶片磷含量(P)、氮磷比(N∶P)和叶绿素含量(Chl)等属性,探讨了针阔混交林叶片性状的差异以及各性状之间的相关关系,进而揭示叶片性状随树冠垂直高度的变化规律。实验结果表明:1)温带针阔混交林内优势树种的部分叶片性状在不同冠层高度之间差异显著。2)随着树冠垂直高度的增加,SLA、LDMC、N、P、N∶P和Chl呈现不同的变化趋势。其中,阔叶树种SLA随着树冠垂直高度的增加而减小;所有树种的LDMC随着树冠垂直高度的增加而增加;不同树种的N、P、N∶P和Chl随着树冠垂直高度的变化规律存在差异。3)对于温带针阔混交林冠层中,SLA与N、P、N∶P均存在显著的正相关关系,高SLA伴随着高的N、P、N∶P,表明植物通过SLA与N、P等性状的协同来提高叶片的光合作用(或对光热资源的利用效率)。本研究通过定量分析探讨温带针阔混交林叶片性状随冠层高度的变化规律,一定程度地揭示了树木对光、热和水资源竞争的适应机制,以及植物叶片的资源利用和分配策略,不仅拓展了传统性状研究的范畴,其相关研究结论也有助于树木生长模型的构建和优化。  相似文献   

7.
Summary This study examines the role of canopy trees in the formation and maintenance of different herb microhabitats in a mixed mesophytic forest stand. Herb abundance and reproductive success were recorded in 54 circular plots under seven species of canopy trees and in 15 circular control plots>2 m from any tree. Soil moisture, soil nutrient levels, litter depth, and light intensity were measured in a subset of these plots. Ordination of plots by both herb relative abundance and by reproductive success of common species indicated that herb assemblages under most canopy tree species were similar to those away from trees. However, herb assemblages under Fagus grandifolia trees differed moderately from the others while plots under Quercus alba trees supported significantly different herb assemblages. Analyses of variance revealed that several herb species occurred at significantly closer mean distance to the base of Q. alba or Fagus trees or at higher densities under these tree species. Soils around Q. alba trees had significantly higher concentrations of calcium and sulfate ions, and higher pH than plots under other tree species and control plots. This correlated closely with Q. alba stemflow which had higher concentrations of calcium and sulfate ions and lower concentrations of hydrogen ions than stemflow from other trees at this site. The slightly lower soil pH near the base of Fagus trees may have been related to the high volumes of stemflow produced by this species. Stepwise regression showed significant correlations between abundances of five common herb species and soil nutrient patterns. Maintenance of spatial heterogeneity in forest floor resources by the presence of different species of canopy trees may therefore be important in the maintenance of diversity in these understory herb communities.  相似文献   

8.
Neighbouring heterospecific plants are often observed to reduce the probability of herbivore attack on a given focal plant. While this pattern of associational resistance is frequently reported, experimental evidence for underlying mechanisms is rare particularly for potential plant species diversity effects on focal host plants and their physical environment. Here, we used an established forest diversity experiment to determine whether tree diversity effects on an important insect pest are driven by concomitant changes in host tree growth or the light environment. We examined the effects of tree species richness, canopy cover and tree growth on the probability of occurrence, the abundance, and volume of galls caused by the pineapple gall adelgid Adelges abietis on Norway spruce. Although tree diversity had no effect on gall abundance, we observed that both the probability of gall presence and gall volume (an indicator of maternal fecundity) decreased with tree species richness and canopy cover around host spruce trees. Structural equation models revealed that effects of tree species richness on gall presence and volume were mediated by concurrent increases in canopy cover rather than changes in tree growth or host tree density. As canopy cover did not influence tree or shoot growth, patterns of associational resistance appear to be driven by improved host tree quality or more favourable microclimatic conditions in monocultures compared to mixed‐stands. Our study therefore demonstrates that changes in forest structure may be critical to understanding the responses of herbivores to plant diversity and may underpin associational effects in forest ecosystems.  相似文献   

9.
The macroalgal communities associated with pneumatophores, basal area of tree trunks and sediment surface in the mangrove forest at Sementa, Selangor consisted of nine main species. Biomass, frequency of occurrence and relative cover of the species along a belt transect, showed two major trends, a decrease in these parameters in the landward direction for Colpomenia sp. Gracilaria blodgettii and Gracilaria crassa and an increase in the landward direction for Dictyota dichotoma, Catenella nipae, Rhizoclonium sp. and Bostrichia radicans. Algal dominance varied with substratum. Pneumatophores were dominated by Caloglossa lepreurii and sediment surface by D. dichotoma. The 40 cm zone at the base of tree trunks was dominated by two algal species. The 0–20 cm region above the sediment surface was colonized by C. nipae, while the 20–40 cm region was dominated by Rhizoclonium sp. The study identified the importance of substrate in macroalgal colonization.  相似文献   

10.
The spatial distribution pattern of trees and the association between canopy and understory individuals were examined with reference to the distribution of tree crowns in a cool temperate, mixed forest in Ohdaigahara, western Japan. Line transect and contact sampling methods were used to examine the pattern over various spatial scales. These methods are useful to detect patterns over a large study area. The dominance ofChamaecyparis obtusa on steep slopes forming large patches suggested that the distribution of this species is a consequence of landslides. UnderstoryFagus crenata showed a clumped distribution, and the relative coverage of this species was larger in canopy gaps than under a closed canopy. Understory individuals ofAbies homolepis showed a positive association with canopy trees ofF. crenata but a negative association with conspecific canopy individuals. These patterns suggested thatF. crenata regenerates in canopy gaps and is replaced byA. homolepis. The dynamics of these two species are consistent with the process of gap dynamics. The effects of both small- and large-scale disturbance must be evaluated to understand the mechanisms of patch formation and the coexistence of forest tree species.  相似文献   

11.
Abstract. We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33 % or 66 % removal of tree basal area from 0.01-ha, 0.05-ha or 0.20-ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with loge tree density as the independent variable accounted for between 93 % and 98 % of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density.  相似文献   

12.
The paper describes the structure and the developmental trends of old-growth Pinus sylvestris stands in the Wigry National Park, in north-eastern Poland. The stands represent a transitional zone between deciduous forests of Central Europe and boreal, coniferous forests of north-eastern Europe. Besides P. sylvestris, the most important tree species are Picea abies and Quercus robur. Among the subcanopy species, Corylus avellana and Sorbus aucuparia occur most frequently. On the basis of the data from 6 permanent sample plots (total size: 1.90 ha), several parameters and stand indices are analysed including species composition of the canopy and the regeneration, diameter distribution, age structure of main tree species, and the relationship between canopy and spatial dispersion of woody regeneration. The most striking feature of the stands studied is the almost complete absence of natural regeneration of P. sylvestris. This seems to be in contradiction with the apparently natural origin of this species in the stands, and a common occurrence of natural disturbances resulting in openings and gaps in forest canopy. The main tree species replacing P. sylvestris in the canopy are P. abies and Q. robur. Also increasing are some broad-leaved species typical of high fertility sites: Acer platanoides, Tilia cordata, Ulmus glabra, and Fraxinus excelsior. A shrub C. avellana occurs extensively competing with tree species and delaying tree replacement processes. While no direct data on the changes in the site conditions can be provided and the recovery hypothesis appears to be the most straightforward explanation of the changes in P. sylvestris stands, the possible role of the allogenic changes in environmental conditions (climate warming, nitrogen deposition) is also discussed.  相似文献   

13.
This article explores patterns of insect herbivore distribution in the canopy of the Laurisilva forests on seven islands in the Azores archipelago. To our knowledge, this is one of the first extensive study of this type in tree or shrub canopies of oceanic island ecosystems. One of the most frequently debated characteristics of such ecosystems is the likely prevalence of vague, ill‐defined niches due to taxonomic disharmony, which may have implications for insect‐plant interactions. For instance, an increase in ecological opportunities for generalist species is expected due to the lack of predator groups and reduced selection for chemical defence in host plants. The following two questions were addressed: 1) Are specialists species rare, and insect herbivore species randomly distributed among host plant species in the Azores? 2) Are the variances in insect herbivore species composition, frequency and richness explained by host plants or by regional island effects? We expect a proportional distribution of herbivore species between host plants, influenced by host frequency and distinct island effects; otherwise, deviation from expectation might suggest habitat preference for specific host tree crowns. Canopy beating tray samples were performed on seven islands, comprising 50 transects with 1 to 3 plant species each (10 replicates per species), giving 1320 samples from ten host species trees or shrubs in total. From a total of 129 insect herbivore species, a greater number of herbivore species was found on Juniperus brevifolia (s=65) and Erica azorica (s=53). However, the number of herbivore species per individual tree crown was higher for E. azorica than for any other host, on all islands, despite the fact that it was only the fourth more abundant plant. In addition, higher insect species richness and greater insect abundance were found on the trees of Santa Maria Island, the oldest in the archipelago. Insect species composition was strongly influenced by the presence of E. azorica, which was the only host plant with a characteristic fauna across the archipelago, whereas the fauna of other plant crowns was grouped by islands. The great insect occurrence on E. azorica reflects strong habitat fidelity, but only four species were clearly specialists. Our findings indicate a broadly generalist fauna. The simplicity of Azorean Laurisilva contributed to the understanding of insect‐plant mechanisms in canopy forest habitats.  相似文献   

14.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B (Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration.  相似文献   

15.
Species interactions and their indirect effects on the availability and distribution of resources have been considered strong determinants of community structure in many different ecological systems. In deciduous forests, the presence of overstory trees and shrubs creates a shifting mosaic of resources for understory plants, with implications for their distribution and abundance. Determination of the ultimate resource constraints on understory vegetation may aid management of these systems that have become increasingly susceptible to invasions by non-native plants. Microstegium vimineum (Japanese grass) is an invasive annual grass that has spread rapidly throughout the understory of forests across the eastern United States since it was first observed in Tennessee in 1919. M. vimineum occurs as extensive, dense patches in the understory of eastern deciduous forests, yet these patches often exhibit sharp boundaries and distinct gaps in cover. One example of this distributional pattern was observed relative to the native midstory tree Asimina triloba (pawpaw), whereby dense M. vimineum cover stopped abruptly at the drip line of the A. triloba patch and was absent beneath the A. triloba canopy. We conducted field and greenhouse experiments to test several hypotheses regarding the causes of this observed pattern of M. vimineum distribution, including allelopathy, seed dispersal, light limitations, and soil moisture, texture, and nutrient content. We concluded that light reduction by the A. triloba canopy was the environmental constraint that prevented establishment of M. vimineum beneath this tree. Whereas overstory tree canopy apparently facilitates the establishment of this shade-tolerant grass, the interaction of overstory canopy with midstory canopy interferes with M. vimineum by reducing the availability of sunflecks at the ground layer. It is likely that other midstory species influence the distribution and abundance of other herb-layer species, with implications for management of understory invasive plant species.  相似文献   

16.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

17.
Despite recent rapid increases in the occurrence of nonindigenous marine organisms in the marine environment, few studies have critically examined the invasion process for a marine species. Here we use manipulative experiments to examine processes of invasion for the Asian kelp Undaria pinnatifida (Harvey) Suringar at two sites on the east coast of Tasmania. Disturbance to reduce cover of the native algal canopy was found to be critical in the establishment of U. pinnatifida, while the presence of a stable native algal canopy inhibited invasion. In the first sporophyte growth season following disturbance of the canopy, U. pinnatifida recruited in high densities (up to 19 plants m−2) while remaining rare or absent in un-manipulated plots. The timing of disturbance was also important. U. pinnatifida recruited in higher densities in plots where the native canopy was removed immediately prior to the sporophyte growth season (winter 2000), compared with plots where the canopy was removed 6 months earlier during the period of spore release (spring 1999). Removal of the native canopy also resulted in a significant increase in cover of sediment on the substratum. In the second year following canopy removal, U. pinnatifida abundance declined significantly, associated with a substantial recovery of native canopy-forming species. A feature of the recovery of the native algal canopy was a significant shift in species composition. Species dominant prior to canopy removal showed little if any signs of recovery. The recovery was instead dominated by canopy-forming species that were either rare or absent in the study areas prior to manipulation of the canopy.  相似文献   

18.
Trampling paths are a feature of estuarine habitats in southeastern Australia. An experimental investigation quantified the impact of trampling over a 3 year period on the microhabitat features and macrofaunal assemblages in a temperate mangrove forest in New South Wales, Australia. The magnitude of the impact varied between 0 and 25 passes (representing a visit by 25 people), which reduced the biomass of the Bostrychia–Caloglossa algal association by 50%. The frequency of trampling varied between one and four, simulating a single and seasonal visits by a group of people to the mangrove forest. The main impact of trampling was an alteration to the microhabitat structures of the forest floor including a decrease in the number and vertical height of pneumatophores, an increase in the proportion of bent and broken pneumatophores in trampled lanes and a decrease in the biomass of the epiphytic Bostrychia–Caloglossa algal association. The macrofauna most impacted by trampling were the gastropods most commonly associated with the pneumatophores and algal assemblages and included Ophicardelus spp. and Assiminea buccinoides. Those gastropods least impacted by trampling were commonly associated with the surface of the sediment or were known to move over the surface and included Bembicium auratum and Cassidula zonata. There was little impact on the main burrowing crab, Heloecius cordiformis. There were some indirect impacts of trampling with the recruitment of Ophicardelus spp. Assiminea buccinoides and Salinator solida reduced in the subsequent year after trampling had ceased. People can create walking paths in mangrove forests that have long term effects on the habitat. An appropriate management emphasis may lie in maintaining the structural features of the habitat.  相似文献   

19.
Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N= 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half‐life of a seedling cohort to less than two years.  相似文献   

20.
王艳杰  国庆喜 《生态学报》2023,43(3):1185-1193
天然林林下光质对乔木幼苗以及灌草的组成与更新具有重要的生态学意义。但目前对于林下光质的研究仍然有限。以吉林东部地区天然林为例,通过调查乔木数据和林下光质数据,基于移动窗口法分析不同空间尺度森林冠层结构与林下光质的关系。结果表明:不同林型下红光光子通量密度(R)与蓝光光子通量密度(B)存在差异。其中沙松-千金榆-花楷槭混交林林下蓝光光子通量密度最小,而沙松-紫椴-臭冷杉混交林和长白落叶松纯林林下最大。随着尺度的增大,天然林乔木胸高断面积与R/PFD(红光/光子通量密度比值)和B/PFD(蓝光/光子通量密度比值)的比值呈显著正相关(P<0.05)。并且随着尺度的增加,相关系数总体逐渐增大,在35m处达到峰值。在此基础上在南向、东向和西向各延伸10m时呈现显著正相关(P<0.05)。在该尺度下分析优势树种对林下R/PFD和B/PFD比值的影响时发现:R/PFD与B/PFD比值随着针叶林胸高断面积的增加而增加。相对于阔叶林来说,多数林型针叶林下的冠层结构与林下R/PFD和B/PFD比值之间显著正相关(P<0.05)。在不同树种下,乔木冠层结构对R/PFD和B/PFD比值的影响...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号