首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor (serpin) which is thought to be a physiological regulator of activated protein C (APC). The residues F353-R354-S355 (P2-P1-P1′) constitute part of the reactive site loop of PCI with the R-S peptide bond being cleaved by the proteinase. Changing the reactive site P1 and P2 residues to those of either proteinase nexin-1, α1-proteinase inhibitor or heparin cofactor II resulted in a decrease in inhibitory activity towards thrombin and APC. Changing the P2 residue F353 → P generated a rPCI which was a better thrombin inhibitor, but was 10-fold less active with APC. While these results support the concept that the P1 and P2 residues are important in the specificity of PCI, they suggest that the reactive site residues are not the only determinant of serpin specificity. Kinetic analysis of the rPCI variants was consistent with PCI operating by a mechanism similar to that proposed for other serpins. In this model an intermediary complex forms between inhibitor and proteinase that can proceed to either cleavage of the inhibitor as substrate or formation of an inactive complex.  相似文献   

2.
Human plasma serine proteinase inhibitors (serpins) gradually lost activity when incubated with catalytic amounts of snake venom or bacterial metalloproteinases. Electrophoretic analyses indicated that antithrombin III, C1-inhibitor, and alpha 2-antiplasmin had been converted by limited proteolysis into modified species which retained inhibitory activity. Further proteolytic attack resulted in the formation of inactivated inhibitors; alpha 1-proteinase inhibitor (alpha 1-antitrypsin) and alpha 1-antichymotrypsin were also enzymatically inactivated, but active intermediates were not detected. Sequence analyses indicated that the initial, noninactivating cleavage occurred in the amino-terminal region of the inhibitors. Inactivation resulted in all cases from the limited proteolysis of a single bond near, but not at, the reactive site bond in the carboxy-terminal region of the inhibitors. The results indicate that the serpins have two regions which are susceptible to limited proteolysis--one near the amino-terminal end and another in the exposed reactive site loop of the inhibitor.  相似文献   

3.
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.  相似文献   

4.
Human interleukin-1beta (IL1beta) was used as a presentation scaffold for the characterization of the reactive site loop (RSL) of the serpin alpha1-antitrypsin (A1AT), the physiological inhibitor of leukocyte elastase. A chimeric protein was generated by replacement of residues 50-53 of IL1beta, corresponding to an exposed reverse turn in IL1beta, with the 10-residue P5-P5' sequence EAIPMSIPPE from A1AT. The chimera (antitrypsin-interleukin, AT-IL) inhibits elastase specifically and also binds the IL1beta receptor. Multinuclear NMR characterization of AT-IL established that, with the exception of the inserted sequence, the structure of the IL1beta scaffold is preserved in the chimera. The structure of the inserted RSL was analyzed relative to that of the isolated 10-residue RSL peptide, which was shown to be essentially disordered in solution. The chimeric RSL was also found to be solvent exposed and conformationally mobile in comparison with the IL1beta scaffold, and there was no evidence of persisting interactions with the scaffold outside of the N- and C-terminal linkages. However, AT-IL exhibits sigificant differences in chemical shift and NOE patterns relative to the isolated RSL that are consistent with local features of non-random structure. The proximity of these features to the P1-P1' residues suggests that they may be responsible for the inhibitory activity of the chimera.  相似文献   

5.
Filion ML  Bhakta V  Nguyen LH  Liaw PS  Sheffield WP 《Biochemistry》2004,43(46):14864-14872
The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.  相似文献   

6.
Headpin (SERPINB13) is a novel member of the serine proteinase inhibitor (Serpin) gene family that was originally cloned from a keratinocyte cDNA library. Western blot analysis using a headpin-specific antiserum recognized a protein with the predicted M(r) of 44kDa in lysates derived from a transformed keratinocyte cell line known to express headpin mRNA. Similarity of the reactive-site loop (RSL) domain of headpin, notably at the P1-P1(') residues, with other serpins that inhibit cysteine and serine proteinases suggests that headpin may inhibit similar proteinases. This study demonstrates that recombinant headpin indeed inhibits cathepsins K and L, but not chymotrypsin, elastase, trypsin, subtilisin A, urokinase-type plasminogen activator, plasmin, or thrombin. The second-order rate constants (k(a)) for the inhibitory reactions of rHeadpin with cathepsins K and L were 5.1+/-0.6x10(4) and 4.1+/-0.8x10(4)M(-1)s(-1), respectively. Headpin formed SDS-stable complexes with cathepsins K and L, a characteristic property of inhibitory serpins. Interactions of the RSL domain of headpin with cathepsins K and L were indicated by cleavage of headpin near the predicted P1-P1(') residues by these proteinases. These results demonstrate that the serpin headpin possesses specificity for inhibiting lysosomal cysteine proteinases.  相似文献   

7.
The serine protease inhibitor C1-Inhibitor (C1-Inh) inhibits several complement- and contact-system proteases, which play an important role in inflammation. C1-Inh has a short reactive site loop (RSL) compared to other serpins. RSL length determines the inhibitory activity of serpins. We investigated the effect of RSL elongation on inhibitory activity of C1-Inh by insertion of one or two alanine residues in the RSL. One of five mutants had an increased association rate with kallikrein, but was nevertheless a poor inhibitor because of a simultaneous high stoichiometry of inhibition (>10). The association rate of the other variants was lower than that of wild-type C1-Inh. These data suggest that the relatively weak inhibitory activity of C1-Inh is not the result of its short RSL. The short RSL of C1-Inh has, surprisingly, the optimal length for inhibition.  相似文献   

8.
A model of the reactive form of plasminogen activator inhibitor-1 (PAI-1) has been constructed using molecular graphics and starting from the known crystal structure of latent PAI-1. The residues P16 to P10′, of which P16-P4 form strand 4 of the β-sheet A (s4A) and P3-P10′ form an extended loop in the latent form, have been removed and remodeled into this structure, based on the structures of ovalbumin and cleaved α1-proteinase inhibitor. Residues P4′-P10′ were remodeled as a β-strand s1C, located on the surface of the molecule and the N-terminal end (P16-P14) of the eliminated loop was rebuilt using appropriate backbone dihedrals. Subsequently, a secondary structure prediction program was applied and further optimization of the model was performed by several molecular dynamics runs. Apparently the β-strand was stabilized by only two hydrogen bonds. Further analysis revealed that, although s4A was removed, s3A and s5A did not approach each other. In this current model it was also found that the large gap between the loop connecting s4C-s3C and the loop connecting s3B-hG remained 11 Å in contrast to the small gap (4Å) at a similar position in other serpins. These observations may explain the ease of a conformational change of the reactive site loop of PAI-1 during transition to the latent and the preinserted form. In addition the current model can be used for the design of stable, functional, PAI-1 mutants. Detailed structural analysis of the latter may facilitate studies on the structure-function relationship in PAI-1 in particular and in other serpins in general.  相似文献   

9.
This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.  相似文献   

10.
A synthetic tetradecapeptide having the sequence of the region of the antithrombin chain amino-terminal to the reactive bond, i.e. comprising residues P1 to P14, was shown to form a tight equimolar complex with antithrombin. A similar complex has previously been demonstrated between alpha 1-proteinase inhibitor and the analogous peptide of this inhibitor (Schulze, A. J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurell, C.-B. (1990) Eur. J. Biochem. 194, 51-56). The antithrombin-peptide complex had a conformation similar to that of reactive bond-cleaved antithrombin and, like the cleaved inhibitor, also had a higher conformational stability and lower heparin affinity than intact antithrombin. These properties suggest that the peptide bound to intact antithrombin at the same site that the P1 to P14 segment of the inhibitor occupies in reactive-bond-cleaved antithrombin, i.e. was incorporated as a sixth strand in the middle of the major beta-sheet, the A sheet. The extent of complex formation was reduced in the presence of heparin with high affinity for antithrombin, which is consistent with heparin binding and peptide incorporation being linked. Antithrombin in the complex with the tetradecapeptide had lost its ability to inactivate thrombin, but the reactive bond of the inhibitor was cleaved as in a normal substrate. These observations suggest a model, analogous to that proposed for alpha 1-proteinase inhibitor (Engh, R.A., Wright, H.T., and Huber, R. (1990) Protein Eng. 3, 469-477) for the structure of intact antithrombin, in which the A sheet contains only five strands and the P1 to P14 segment of the chain forms part of an exposed loop of the protein. The results further support a reaction model for serpins in which partial insertion of this loop into the A sheet is required for trapping of a proteinase in a stable complex, and complete insertion is responsible for the conformational change accompanying cleavage of the reactive bond of the inhibitor.  相似文献   

11.
1. The putative equivalent of the human major plasma serpin (alpha 1-proteinase inhibitor or alpha 1-antitrypsin) in the tammar wallaby (Macropus eugenii) has been further characterized by structural (peptide and immunopeptide mapping and sequence studies) and functional analyses revealing close homology of the wallaby proteins to human alpha 1-proteinase inhibitor. 2. A sixth allele, Pi J, was detected and its products characterized in terms of pI, Mr, inhibitory spectra and terminal sialic acid content. 3. A recently-developed electrophoretic in situ oxidation/binding method was adapted to provide protein suitable for sequence analysis of the N-terminus and reactive site region including assignment of the P1 and P'1 residues. 4. All sequence analyses were performed on proteins or peptides (approximately Mr 3500) blotted onto polybrene treated GF/C or polyvinylidene difluoride membrane respectively. 5. The P5 to P'4 residues of the reactive centre are identical with those of the human inhibitor thereby allowing the wallaby inhibitor also to be classified as a METserpin. 6. The P1 methionine is presumably responsible for the oxidation sensitivity observed in the electrophoretic in situ functional assay for the wallaby inhibitor. 7. The plasma concentration of the wallaby inhibitor is similar to that reported for human alpha 1-proteinase inhibitor.  相似文献   

12.
Two closely related crystal structures of alpha 1-proteinase inhibitor modified at the reactive site peptide bond Met358--Ser359 have been analysed. The crystal structure has been obtained from diffraction data at 3 A resolution, with phases originally from isomorphous replacement. The electron density map was substantially improved by cyclic averaging of the electron densities of the two crystal forms and allowed the chain to be traced in terms of the known chemical amino acid sequence. Energy restrained crystallographic refinement was initiated and resulted in conventional R-values of 0.251 for the tetragonal crystal form (6 to 3 A resolution) and 0.247 for the hexagonal crystal form (6 to 3.2 A resolution). The polypeptide chain is almost completely arranged in well-defined secondary structural elements: three beta-sheets and eight alpha-helices. The helices are preferentially formed by the first 150 residues. They are in proximity underneath sheet A. The chain ends Met358 and Ser359 of the nicked species are arranged in strands on opposite ends of the molecule indicating a major structural rearrangement upon modification of the intact inhibitor. It is suggested that the Met358 strand is in a different conformation removed from sheet A and approaches Ser359 in the intact inhibitor species. Glu342, which is exchanged by a lysine in the Z-variant is in a strategic position for such a rearrangement. The three carbohydrate chains of alpha 1-proteinase inhibitor have partly defined electron density close to their attachment sites at asparagine residues. The anti-thrombin and ovalbumin amino acid sequences can be accommodated in the alpha 1 inhibitor molecular structure. The intron-exon junctions of the ovalbumin and the alpha 1-proteinase inhibitor gene are all in surface loops of the mature protein.  相似文献   

13.
Purified recombinant human monocyte plasminogen activator inhibitor 2 (PAI-2) retained inhibitory activity after exposure to a number of oxidants, including hypochlorite anion (OCl-), chloramine-T (CT) and hydrogen peroxide (H2O2). Analysis of PAI-2 exposed to oxidants by gel filtration chromatography and SDS-PAGE indicated that although the protein could no longer be detected by silver staining, this was not due to fragmentation of the PAI-2 molecule. The sensitivity of a number of serine protease inhibitors (serpins), (eg. alpha 1 proteinase inhibitor (alpha 1PI) and plasminogen activator inhibitor 1 (PAI-1] to oxidative inactivation has been attributed to oxidation of reactive site methionine residues and/or tertiary structural modifications. The relevance of these phenomena and the potential for PAI-2 to be used as a therapeutic inhibitor of urokinase (uPA)-dependent proteolysis during inflammation and tumour metastasis is discussed.  相似文献   

14.
Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet.  相似文献   

15.
Hejgaard J 《Biological chemistry》2005,386(12):1319-1323
Serpins appear to be ubiquitous in eukaryotes, except fungi, and are also present in some bacteria, archaea and viruses. Inhibitory serpins with a glutamine as the reactive-center P1 residue have been identified exclusively in a few plant species. Unique serpins with a reactive center sequence of three Gln residues at P3-P1 or P2-P1' were isolated from barley and wheat grain, respectively. Barley BSZ3 was an irreversible inhibitor of chymotrypsin, with a second-order association rate constant for complex formation k(a)' of the order of 10(4) M(-1) s(-1); however, only a minor fraction of the serpin molecules reacted with chymotrypsin, with the majority insensitive to cleavage in the reactive center loop. Wheat WSZ3 was cleaved specifically at P8 Thr and was not an inhibitor of chymotrypsin. These reactive-center loops may have evolved conformations that are optimal as inhibitory baits for proeinases that specifically degrade storage prolamins containing Gln-rich repetitive sequences, most likely for digestive proteinases of insect pests or fungal pathogens that infect cereals. An assembled full-length amino acid sequence of a serpin expressed in cotton boll fiber (GaZ1) included conserved regions essential for serpin-proteinase interaction, suggesting inhibitory capacity at a putative reactive center P2-P2' with a sequence of four Gln residues.  相似文献   

16.
Hwang SR  Stoka V  Turk V  Hook VY 《Biochemistry》2005,44(21):7757-7767
Molecular cloning revealed the unique serpin endopin 2C that demonstrates selective inhibition of cathepsin L compared to papain or elastase. Endopin 2C, thus, functions as a serpin with the property of cross-class inhibition. Endopin 2C possesses homology in primary sequence to endopin 2A and other isoforms of endopins related to alpha1-antichymotrypsin, yet endopin 2C differs in its target protease specificity. Recombinant endopin 2C showed effective inhibition of cathepsin L with a stoichiometry of inhibition (SI) of 1/1 (molar ratio of inhibitor/protease), with the second-order rate constant, k(ass), of 7.2 x 10(5) M(-1) s(-1). Less effective endopin 2C inhibition of papain and elastase occurred with k(ass) association rate constants of approximately 1 x 10(4) M(-1) s(-1) with high SI values. Endopin 2C formed SDS-stable complexes with cathepsin L, papain, and elastase that are typical of serpins. These results are among the first to demonstrate stable serpin complexes with target cysteine proteases. Interactions of endopin 2C with cathepsin L and elastase were indicated by protease cleavage of the RSL region between P1-P1' residues of Thr-Ser. The hydrophobic Phe residue in the P2 position of the RSL region is consistent with the specificity of cathepsin L for hydrophobic residues in the P2 position of its substrate cleavage site. The NH2-terminal signal sequence of endopin 2C, like that of cathepsin L, predicts their colocalization to subcellular organelles. These findings demonstrate endopin 2C as a novel serpin that possesses cross-class inhibition with selectivity for inhibition of cathepsin L.  相似文献   

17.
1H and 31P NMR spectroscopies have been used to examine the effects of limited proteolysis with subtilisin Carlsberg on the global conformation of ovalbumin and on the local environment of phosphoserine 344, a residue two positions removed from the site of proteolysis. Such limited proteolysis has been shown to result in excision of a hexapeptide from the region of the protein that, in other serine protease inhibitors (serpins), contains the reactive center. Based on the structure of the related serpin alpha 1-antitrypsin, it has been predicted that phosphoserine 344 should undergo a large change in environment upon proteolysis of ovalbumin (L?bermann, H., Tokuoka, R., Deisenhofer, J., and Huber, R. (1984) J. Mol. Biol. 177, 531-550). Proteolysis of ovalbumin produces a small upfield shift (0.15 ppm) of the 31P resonance of phosphoserine 344. In addition, the pKa of phosphoserine 344 is raised by 0.1 pH unit. At pH 8.5, phosphoserine 344 in cleaved ovalbumin (plakalbumin) is as accessible to hydrolysis by Escherichia coli alkaline phosphatase as it is in native ovalbumin. 1H NMR shows that dephosphorylation of serine 344 has an imperceptible effect on the protein's conformation. Similarly, little effect on conformation is seen by 1H NMR upon proteolysis of ovalbumin. These findings suggest that ovalbumin does not undergo a marked conformational change analogous to that inferred for the related members of the serpin superfamily, alpha 1-antitrypsin and antithrombin III, nor do the residues close to the site of proteolysis appear to change environment from that of an exposed loop to a buried strand of beta-sheet. These findings are not consistent with the hypothesis of Carrell and Owen ((1985) Nature 317, 730-732) for the role of the exposed loop in serpins of directly facilitating conformational change upon cleavage of the loop. Instead, it is proposed that cleavage of the exposed loop alters the solvent accessibility of residues formerly covered by the loop and that this provides the thermodynamic impetus for conformational change, perhaps by disruption of a salt bridge crucial to the integrity of the native structure.  相似文献   

18.
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.  相似文献   

19.
Cleavage of ovalbumin and angiotensinogen at sites homologous to the reactive centre loop of alpha 1-antitrypsin is not accompanied by the increase in heat-stability associated with the transition from the native stressed (S) structure to a cleaved relaxed (R) form that is typical of other serpins. Failure to undergo the S-R change in ovalbumin is not due to phosphorylation of Ser-344 near the sites of cleavage on the loop. The suggested explanation is the unique presence of bulky side chains at the P10-P12 site in ovalbumin and angiotensinogen.  相似文献   

20.
Proteinase inhibitors in the serpin family form complexes with serine proteinases by interactions between the gamma-OH group at serine 195 of the enzyme and a specific peptide bond within the reactive site loop of the inhibitor. However, the type of complex formed (i.e. Michaelis, acyl, or tetrahedral) is unknown. Until now, 13C NMR spectroscopy studies have only been useful in examining complexes formed with either peptide-related or small protein inhibitors, where 13C-labeled amino acids can be inserted semi-synthetically. Recombinant DNA technology has, however, made it possible to specifically enrich larger proteins with 13C. In the case of serpins we have examined the structure of the complex formed between human alpha 1-proteinase inhibitor uniformally labeled with [13C]methionine and porcine pancreatic elastase. 13C NMR spectroscopic studies revealed a large upfield chemical shift of the carbonyl signal of Met-358 upon complex formation suggesting for the first time that a tetrahedral adduct is formed between a serpin inhibitor and a serine proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号