首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P2X7 receptor (P2X7R) plays an important role in diverse conditions associated with tissue damage and inflammation, suggesting that the human P2X7R (hP2X7R) is an attractive therapeutic target. In the present study, the synthesis and structure-activity relationship (SAR) of a novel series of quinoline derivatives as P2X7R antagonists are described herein. These compounds exhibited mechanistic activity (YO PRO) in an engineered HEK293 expressing hP2X7R as well as a functional response (IL-1β) in human THP-1 (hTHP-1) cellular assays. Compound 19 was identified as the most promising compound in this series with excellent cellular potency, low liver microsomal clearance, good permeability and low efflux ratio. In addition, this compound also displayed good pharmacokinetic properties and acceptable brain permeability (Kp,uu of 0.37).  相似文献   

2.
Pain is unfortunately a quite common symptom for cancer patients. Normally pain starts as an episodic experience at early cancer phases to become chronic in later stages. In order to improve the quality of life of oncological patients, anti-cancer treatments are often accompanied by analgesic therapies. The P2X receptor are adenosine triphosphate (ATP) gated ion channels expressed by several cells including neurons, cancer and immune cells. Purinergic signaling through P2X receptors recently emerged as possible common pathway for cancer onset/growth and pain sensitivity. Indeed, tumor microenvironment is rich in extracellular ATP, which has a role in both tumor development and pain sensation. The study of the different mechanisms by which P2X receptors favor cancer progression and relative pain, represents an interesting challenge to design integrated therapeutic strategies for oncological patients. This review summarizes recent findings linking P2X receptors and ATP to cancer growth, progression and related pain. Special attention has been paid to the role of P2X2, P2X3, P2X4 and P2X7 in the genesis of cancer pain and to the function of P2X7 in tumor growth and metastasis. Therapeutic implications of the administration of different P2X receptor blockers to alleviate cancer-associated pain sensations contemporarily reducing tumor progression are also discussed.  相似文献   

3.
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2–4 h. Nucleotide release from hepatic cells is stimulated by the Ca2+ ionophore, ionomycin, and by the P2 receptor agonist, 2′3′-O-(4-benzoyl-benzoyl)-adenosine 5′-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10–100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca2+ levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9419-2) contains supplementary material, which is available to authorized users.  相似文献   

4.
In this study, we monitored the direct expression of P2 receptors for extracellular ATP in cerebellar granule neurons undergoing metabolism impairment. Glucose deprivation for 30–60 min inhibited P2Y1 receptor protein, only weakly modulated P2X1, P2X2 and P2X3, and up‐regulated by about two‐fold P2X4, P2X7 and P2Y4. The P2X/Y antagonist basilen blue, protecting cerebellar neurons from hypoglycemic cell death, maintained within basal levels only the expression of P2X7 and P2Y4 proteins, but not P2X4 or P2Y1. Glucose starvation transiently increased (up to three‐fold) the expression of NGFRp75 receptor protein and strongly stimulated the extracellular release of nerve growth factor (NGF; about 10‐fold). Exogenously added NGF then augmented hypoglycemic neuronal death by about 60%, increasing the percentage of Höechst‐positive nuclei (from approximately 62 to 95%), reducing lactate dehydrogenase (LDH) release (from about 50 to 14%) and significantly overstimulating the hypoglycemia‐induced expression of P2X7 and P2Y4. Conversely, extracellular ATP augmented hypoglycemic neuronal death by about 80%, reducing the number of Höechst‐positive nuclei (from approximately 62% to 14%), augmenting LDH outflow (by about 30%) and further increasing the hypoglycemia‐induced expression of NGFRp75. Our results indicate that P2 and NGFRp75 receptors are modulated during glucose starvation and that extracellular ATP and NGF drive features of, respectively, necrotic and apoptotic hypoglycemic cell death, aggravating the consequences of metabolism impairment in cerebellar primary neurons.  相似文献   

5.
6.
We previously demonstrated that P2X7 receptors (P2X7Rs) expressed by cultured mouse astrocytes were activated without any exogenous stimuli, but its roles in non-stimulated resting astrocytes remained unknown. It has been reported that astrocytes exhibit engulfing activity, and that the basal activity of P2X7Rs regulates the phagocytic activity of macrophages. In this study, therefore, we investigated whether P2X7Rs regulate the engulfing activity of mouse astrocytes. Uptake of non-opsonized beads by resting astrocytes derived from ddY-mouse cortex time-dependently increased, and the uptaken beads were detected in the intracellular space. The bead uptake was inhibited by cytochalasin D (CytD), an F-actin polymerization inhibitor, and agonists and antagonists of P2X7Rs apparently decreased the uptake. Spontaneous YO-PRO-1 uptake by ddY-mouse astrocytes was reduced by the agonists and antagonists of P2X7Rs, but not by CytD. Down-regulation of P2X7Rs using siRNA decreased the bead uptake by ddY-mouse astrocytes. In addition, compared to in the case of ddY-mouse astrocytes, SJL-mouse astrocytes exhibited higher YO-PRO-1 uptake activity, and their bead uptake was significantly greater. These findings suggest that resting astrocytes exhibit engulfing activity and that the activity is regulated, at least in part, by their P2X7Rs.  相似文献   

7.
A novel series of cyanoguanidine-piperazine P2X7 antagonists were identified and structure–activity relationship (SAR) studies described. Compounds were assayed for activity at human and rat P2X7 receptors in addition to their ability to inhibit IL-1β release from stimulated human whole blood cultures. Compound 27 possesses potent activity (0.12 μM) in this latter assay and demonstrates moderate clearance in-vivo.  相似文献   

8.
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven.  相似文献   

9.
The P2X7 receptor (P2X7R) has been implicated in the process of multinucleation and cell fusion. We have previously demonstrated that blockade of P2X7Rs on osteoclast precursors using a blocking antibody inhibited multinucleated osteoclast formation in vitro, but that P2X7R KO mice maintain the ability to form multinucleated osteoclasts. This apparent contradiction of the role the P2X7R plays in multinucleation has prompted us to examine the effect of the most commonly used and recently available P2X7R antagonists on osteoclast formation and function. When added to recombinant RANKL and M-CSF human blood monocytes cultures, all but one compound, decreased the formation and function of multinucleated TRAP-positive osteoclasts in a concentration-dependent manner. These data provide further evidence for the role of the P2X7R in the formation of functional human multinucleated osteoclasts and highlight the importance of selection of antagonists for use in long-term experiments.  相似文献   

10.
ATP-mediated signaling has widespread actions in the nervous system from neurotransmission to regulation of proliferation. In addition, ATP is released during injury and associated to immune and inflammatory responses. Still, the potential of therapeutic intervention of purinergic signaling during pathological states is only now beginning to be explored because of the large number of purinergic receptors subtypes involved, the complex and often overlapping pharmacology and because ATP has effects on every major cell type present in the CNS. In this review, we will focus on a subclass of purinergic-ligand-gated ion channels, the P2X7 receptor, its pattern of expression and its function in the spinal cord where it is abundantly expressed. We will discuss the mechanisms for P2X7R actions and the potential that manipulating the P2X7R signaling pathway may have for therapeutic intervention in pathological events, specifically in the spinal cord.  相似文献   

11.
The reference standard IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoroethylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 12% in three steps. The target tracer [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-[18F]fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from desmethyl-GSK1482160 with 2-[18F]fluoroethyl tosylate, prepared from 1,2-ethylene glycol-bis-tosylate and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 1–3% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370?GBq/μmol. The potency of IUR-1601 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1601 and GSK1482160 are 4.31 and 5.14?nM, respectively.  相似文献   

12.
Thermoluminescence (TL) measurements were carried out on europium (Eu) doped magnesium pyrophosphate (Mg2P2O7) nanopowders using gamma irradiation in the dose range of 0.1 to 3 kGy. The powder samples were successfully synthesized by chemical co‐precipitation synthesis route. The formation and crystallinity of the compound was confirmed by powder X‐ray diffraction (PXRD) pattern. The estimated particle size was found to be in nanometer scale by using Debye Scherer's formula. A scanning electron microscopy (SEM) study was carried out for the morphological characteristics of as synthesized Mg2P2O7:Eu phosphor. Photoluminescence (PL) study was carried out to confirm the presence of the rare‐earth ion and its valence state. The TL analysis of synthesized samples were performed after the irradiation of Mg2P2O7:Eu with cobalt‐60 (60Co) gamma rays. The high and low intensity peaks of TL glow curve appeared at around 400 K, 450 K, 500 K and 596 K respectively. The appreciable shift in peak positions has been observed for different concentrations of Eu ion. The trapping parameters, namely activation energy (E), order of kinetics (b) and frequency factor (s) have been determined using thermal cleaning process, peak shape (Chen's) method and glow curve deconvolution (GCD) functions.  相似文献   

13.
14.
15.
Orthodontic tooth movement induces alveolar bone resorption and formation by mechanical stimuli. Force exerted on the traction side promotes bone formation. Adenosine triphosphate (ATP) is one of the key mediators that respond to bone cells by mechanical stimuli. However, the effect of tension force (TF)‐induced ATP on osteogenesis is inadequately understood. Accordingly, we investigated the effect of TF on ATP production and osteogenesis in MC3T3‐E1 cells. Cells were incubated in the presence or absence of P2X7 receptor antagonist A438079, and then stimulated with or without cyclic TF (6% or 18%) for a maximum of 24 h using Flexercell Strain Unit 3000. TF significantly increased extracellular ATP release compared to control. Six percent TF had maximum effect on ATP release compared to 18% TF and control. Six percent TF induced the expression of Runx2 and Osterix. Six percent TF also increased the expression of extracellular matrix proteins (ECMPs), ALP activity, and the calcium content in ECM. A438079 blocked the stimulatory effect of 6% TF on the expression of Runx2, Osterix and ECMPs, ALP activity, and calcium content in ECM. This study indicated that TF‐induced extracellular ATP is released in osteoblasts, suggesting that TF‐induced ATP promotes osteogenesis by autocrine action through P2X7 receptor in osteoblasts. J. Cell. Biochem. 116: 12–21, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.  相似文献   

16.
P2X7 receptor (P2X7R) activation by extracellular ATP triggers influx of Na(+) and Ca(2+), cytosolic Ca(2+) overload and consequently cytotoxicity. Whether disturbances in endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are involved in P2X7R-mediated cell death is unknown. In this study, a P2X7R agonist (BzATP) was used to activate P2X7R in differentiated NG108-15 neuronal cells. In a concentration-dependent manner, application of BzATP (10-100 μM) immediately raised cytosolic Ca(2+) concentration ([Ca(2+)]i) and caused cell death after a 24-h incubation. P2X7R activation for 2 h did not cause cell death but resulted in a sustained reduction in ER Ca2+ pool size, as evidenced by a diminished cyclopiazonic acid-induced Ca(2+) discharge (fura 2 assay) and a lower fluorescent signal in cells loaded with Mag-fura 2 (ER-specific Ca(2+)-fluorescent dye). Furthermore, P2X7R activation (2 h) led to the appearance of markers of ER stress [phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α) and C/EBP homologous protein (CHOP)] and apoptosis (cleaved caspase 3). Xestospongin C (XeC), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor (IP3R), strongly inhibited BzATP-triggered [Ca(2+)]i elevation, suggesting that the latter involved Ca(2+) release via IP3R. XeC pretreatment not only attenuated the reduction in Ca(2+) pool size in BzATP-treated cells, but also rescued cell death and prevented BzATP-induced appearance of ER stress and apoptotic markers. These novel observations suggest that P2X7R activation caused not only Ca(2+) overload, but also Ca(2+) release via IP3R, sustained Ca(2+) store depletion, ER stress and eventually apoptotic cell death.  相似文献   

17.
18.
Extracellular adenosine 5′-triphosphate (ATP) triggers the P2X7 receptor (P2X7R) ionic channel to stimulate the release of the interleukin-IL-1β cytokine into macrophages. The current study explored the reaction of six structurally diverse triazole derivatives on P2X7-mediated dye uptake into murine peritoneal macrophages. P2X7R activity determined by ATP-evoked fluorescent dye uptake. Triazole derivatives toxicity measured using dextran rhodamine exclusion based colorimetric assay. A740004 and BBG, both P2X7R antagonist, inhibited ATP-induced dye uptake. In contrast, the derivatives 5a, 5b, 5e, and 5f did not diminish P2X7R activity in concentrations until 100?µM. 5c and 5d analogs caused a potent inhibitory activity on P2X7-induced dye uptake. Dextran Rhodamine exclusion measurements after 24?h of continuous treatment with triazole derivatives indicated a moderated toxicity for all molecules. In conclusion, this study showed that a series of new hybrid 1,2,3-triazolic naphthoquinones reduces P2X7R-induced dye uptake into murine macrophages. In silico analysis indicates a good pharmacokinetic profile and molecular docking results of these analogs indicate the potential to bind into an allosteric site located into the P2X7R pore and juxtaposed with the ATP binding pocket. In this manner, the compounds 5c and 5d may be used as a scaffold for new P2X7R inhibitors with reduced toxicity, and good anti-inflammatory activity.  相似文献   

19.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

20.
In this study, we examined the response of glioma C6 cells to 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) and showed that the BzATP-induced calcium signaling does not involve the P2X7 receptor activity. We show here that in the absence of extracellular Ca2+, BzATP-generated increase in [Ca2+]i via Ca2+ release from intracellular stores. In the presence of calcium ions, BzATP established a biphasic Ca2+ response, in a manner typical for P2Y receptors. Brilliant Blue G, a selective antagonist of the rat P2X7 receptor, did not reduce any of the two components of the Ca2+ response elicited by BzATP. Periodate-oxidized ATP blocked not only BzATP- but also UTP-induced Ca2+ elevation. Moreover, BzATP did not open large transmembrane pores. What is more, a cross-desensitization between UTP and BzATP occurred, which clearly shows that in glioma C6 cells BzATP activates most likely the P2Y2 but not the P2X7 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号