首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We report the isolation of the genes encoding the β1 and β2 adrenergic receptors from dog genomic DNA. Sequence analysis of both genes revealed intronless open reading frames of 473 and 415 amino acid residues, receptively. Heterologous expression of both receptors in CHO cells indicated that both receptors are functionally similar to the human homologs. Comparing the dog β1 and β2 adrenergic receptors, the β1 receptor appears to bind to G proteins more tightly than the β2 receptor. Heterologously expressed receptors provide a convenient system for evaluating novel receptor agonists and antagonists.  相似文献   

2.
Abstract

The adenylate cyclase-stimulatory β2-adrenergic receptor has been purified to apparent homogeneity from hamster lung. Partial amino acid sequence obtained from isolated CNBr peptides was used to clone the gene and cDNA for this receptor. The predicted amino acid sequence for the hamster β2-adrenergic receptor revealed that the protein consists of a single polypeptide chain of 418 aa with consensus N-glycosylation and phosphorylation sites predicted by previous in vitro data. The most striking feature of the receptor protein however, is that it contains seven stretches of hydrophobic residues similar to the proposed seven transmembrane segments of the light receptor rhodopsin. Significant amino acid homology (30-35%) can be found between the hamster β2-adrenergic receptor and rhodopsin within these putative membrane spanning regions. Using a hamster β2-adrenergic receptor probe, the gene and cDNA for the human β2-adrenergic receptor were isolated, revealing a high degree of homology (87%) between the two proteins from different species. Unlike the genes encoding the family of opsin pigments, of which rhodopsin is a member, the genes encoding both hamster and human β2-adrenergic receptors are devoid of introns in their coding as well as 5′ and 3′ untranslated nucleotide sequences. The cloning of the genes and the elucidation of the aa sequences for these G-protein coupled receptors should help to determine the structure-function as well as the evolutionary relationship of these proteins.  相似文献   

3.
Abstract

Rat C6 glioma cells have both β1- and β2-adrenergic receptors in ~ 7:3 ratio. When the cells were exposed to the β-adrenergic agonist isoproterenol, there was a rapid sequestration of up to 50% of the surface receptor population over a 30-min period as measured by the loss of binding of the hydrophilic ligand [3H] CGP-12177 to intact cells. Using the β2-selective antagonist CGP 20712A to quantify the proportion of the two subtypes, it was found that although both β1 and β2 receptors were sequestered, the latter were sequestered initially twice as fast as the former. More prolonged agonist exposure led to a down-regulation of ~ 90% of the total receptor population by 6 h as measured by the loss of binding of the more hydrophobic ligand [125I] iodocyanopindolol to cell lysates. The two subtypes, however, underwent down-regulation with similar kinetics. Treatment of the cells with agents that raise cyclic AMP levels such as cholera toxin and forskolin resulted in a slower, but still coordinated down-regulation of both subtypes. Thus, there appears to be both independent and coordinate regulation of endogenous β1-and β2-adrenergic receptors in the same cell line.  相似文献   

4.
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP). Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes) allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells). In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified.  相似文献   

5.
beta-Endorphin-like decapeptide immunorphin (SLTCLVKGFY), a selective agonist of non-opioid beta-endorphin receptor, was labeled with tritium to specific activity of 24 Ci/mmol. It was used for the detection and characterization of non-opioid beta-endorphin receptors on rat adrenal cortex membranes (Kd1 = 39.6 +/- 2.0 nM, Bmax1 = 40.7 +/- 2.3 pmol/mg protein; Kd2 = 0.25 +/- 0.01 micro M, Bmax2 = 187.8 +/- 9.4 pmol/mg protein). beta-Endorphin was found to inhibit the [3H]immunorphin specific binding to membranes (Ki = 70.0 +/- 9.2 nM); naloxone, [Met5]enkephalin, and alpha- and gamma-endorphins tested in parallel were inactive. Immunorphin at concentrations of 10(-9)-10(-6) M was found to inhibit the adenylate cyclase activity in adrenocortical membranes, while intramuscular injection of immunorphin at doses of 10-100 micro g/kg was found to reduce the secretion of 11-oxycorticosteroids from the adrenals to the bloodstream.  相似文献   

6.
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.  相似文献   

7.

Background

In experimental conditions alveolar fluid clearance is controlled by alveolar β2-adrenergic receptors. We hypothesized that if this occurs in humans, then non-selective β-blockers should reduce the membrane diffusing capacity (DM), an index of lung interstitial fluid homeostasis. Moreover, we wondered whether this effect is potentiated by saline solution infusion, an intervention expected to cause interstitial lung edema. Since fluid retention within the lungs might trigger excessive ventilation during exercise, we also hypothesized that after the β2-blockade ventilation increased in excess to CO2 output and this was further enhanced by interstitial edema.

Methods and Results

22 healthy males took part in the study. On day 1, spirometry, lung diffusion for carbon monoxide (DLCO) including its subcomponents DM and capillary volume (VCap), and cardiopulmonary exercise test were performed. On day 2, these tests were repeated after rapid 25 ml/kg saline infusion. Then, in random order 11 subjects were assigned to oral treatment with Carvedilol (CARV) and 11 to Bisoprolol (BISOPR). When heart rate fell at least by 10 beats·min−1, the tests were repeated before (day 3) and after saline infusion (day 4). CARV but not BISOPR, decreased DM (−13±7%, p = 0.001) and increased VCap (+20±22%, p = 0.016) and VE/VCO2 slope (+12±8%, p<0.01). These changes further increased after saline: −18±13% for DM (p<0.01), +44±28% for VCap (p<0.001), and +20±10% for VE/VCO2 slope (p<0.001).

Conclusions

These findings support the hypothesis that in humans in vivo the β2-alveolar receptors contribute to control alveolar fluid clearance and that interstitial lung fluid may trigger exercise hyperventilation.  相似文献   

8.
Sympathetic activation in a “fight or flight reaction” may put the sensory systems for hearing and balance into a state of heightened alert via β1-adrenergic receptors (β1-AR). The aim of the present study was to localize β1-AR in the gerbil inner ear by confocal immunocytochemistry, to characterize β1-AR by Western immunoblots, and to identify β1-AR pharmacologically by measurements of cAMP production. Staining for β1-AR was found in strial marginal cells, inner and outer hair cells, outer sulcus, and spiral ganglia cells of the cochlea, as well as in dark, transitional and supporting cells of the vestibular labyrinth. Receptors were characterized in microdissected inner ear tissue fractions as 55 kDa non-glycosylated species and as 160 kDa high-mannose-glycosylated complexes. Pharmacological studies using isoproterenol, ICI-118551 and CGP-20712A demonstrated β1-AR as the predominant adrenergic receptor in stria vascularis and organ of Corti. In conclusion, β1-AR are present and functional in inner ear epithelial cells that are involved in K+ cycling and auditory transduction, as well as in neuronal cells that are involved in auditory transmission.  相似文献   

9.
In our previous study, the oxLDL/β2GPI/anti-β2GPI complex was demonstrated to further enhance the foam cell formation and migration of VSMC, as well as the expression of inflammatory cytokines, via the TLR4/NF-κB pathway. However, sparse information is available on other pro-atherogenic pathogenic effects of the oxLDL/β2GPI/anti-β2GPI complex, such as effects on proliferation and apoptosis. In the present study, we focused on the biphasic effects and underlying mechanisms of the oxLDL/β2GPI/anti-β2GPI complex on VSMC survival. The data showed that short exposure to the oxLDL/β2GPI/anti-β2GPI complex could activate NF-κB and ERK1/2 pathways and stimulate cell proliferation in VSMC. In contrast, longer exposure increased the level of p38 pathway activation and cell apoptosis. Additionally, the promotion effect of the oxLDL/β2GPI/anti-β2GPI complex on both proliferation and apoptosis, as well as signaling pathway activation, was stronger than that of the other control groups. The use of selective blockers showed that TLR4/NF-κB and ERK1/2 partly mediated oxLDL/β2GPI/anti-β2GPI complex-induced proliferation and had an inhibitory effect on complex-stimulated apoptosis. Conversely, TLR2/p38 partly mediated oxLDL/β2GPI/anti-β2GPI complex-induced apoptosis and had a negative effect on complex-stimulated proliferation. Specific inhibitors of NF-κB and ERK1/2 activation could augment the oxLDL/β2GPI/anti-β2GPI complex-induced phosphorylation of p38 and vice versa. Under pretreatment with NADPH oxidase inhibitors, intracellular ROS generation was confirmed to participate in oxLDL/β2GPI/anti-β2GPI complex-induced proliferation and apoptosis, as well as the phosphorylation of NF-κB and MAPKs. Taken together, our data clearly revealed that the oxLDL/β2GPI/anti-β2GPI complex had biphasic effects on VSMC survival, partly mediated by ROS-induced NF-κB and MAPKs activation. The TLR4/NF-κB and TLR2/p38 pathways played supporting roles in this dual effects-initiated signal network, and there is a trade-off relationship between the phosphorylation of NF-κB, ERK1/2 and p38. The dual effects of the oxLDL/β2GPI/anti-β2GPI complex on VSMC survival contribute to the development of the structure typical of atherosclerotic lesions, particularly focal excessive growth alternating with necrosis.  相似文献   

10.
The molecular mechanism underlying the post-Golgi transport of G protein-coupled receptors (GPCRs) remains poorly understood. Here we determine the role of Rab8 GTPase, which modulates vesicular protein transport between the trans-Golgi network (TGN) and the plasma membrane, in the cell surface targeting of α2B- and β2-adrenergic receptors (AR). Transient expression of GDP- and GTP-bound Rab8 mutants and short hairpin RNA-mediated knockdown of Rab8 more potently inhibited the cell surface expression of α2B-AR than β2-AR. The GDP-bound Rab8(T22N) mutant attenuated ERK1/2 activation by α2B-AR, but not β2-AR, and arrested α2B-AR in the TGN compartment. Co-immunoprecipitation revealed that both α2B-AR and β2-AR physically interacted with Rab8 and glutathione S-transferase fusion protein pulldown assays demonstrated that Rab8 interacted with the C termini of both receptors. Interestingly, mutation of the highly conserved membrane-proximal C terminus dileucine motif selectively blocked β2-AR interaction with Rab8, whereas mutation of residues Val431-Phe432-Asn433-Gln434, Pro447-Trp448, Gln450-Thr451, and Trp453 in the C terminus impaired α2B-AR interaction with Rab8. Furthermore, transport inhibition by Rab8(T22N) of a chimeric β2-AR carrying the α2B-AR C terminus was similar to α2B-AR. These data provide strong evidence indicating that Rab8 GTPase interacts with distinct motifs in the C termini of α2B-AR and β2-AR and differentially modulates their traffic from the TGN to the cell surface.  相似文献   

11.
2’-Methoxy-6-methylflavone (2’MeO6MF) is an anxiolytic flavonoid which has been shown to display GABAA receptor (GABAAR) β2/3-subunit selectivity, a pharmacological profile similar to that of the general anaesthetic etomidate. Electrophysiological studies suggest that the full agonist action of 2’MeO6MF at α2β3γ2L GABAARs may mediate the flavonoid’s in vivo effects. However, we found variations in the relative efficacy of 2’MeO6MF (2’MeO6MF-elicited current responses normalised to the maximal GABA response) at α2β3γ2L GABAARs due to the presence of mixed receptor populations. To understand which receptor subpopulation(s) underlie the variations observed, we conducted a systematic investigation of 2’MeO6MF activity at all receptor combinations that could theoretically form (α2, β3, γ2L, α2β3, α2γ2L, β3γ2L and α2β3γ2L) in Xenopus oocytes using the two-electrode voltage clamp technique. We found that 2’MeO6MF activated non-α-containing β3γ2L receptors. In an attempt to establish the optimal conditions to express a uniform population of these receptors, we found that varying the relative amounts of β3:γ2L subunit mRNAs resulted in differences in the level of constitutive activity, the GABA concentration-response relationships, and the relative efficacy of 2’MeO6MF activation. Like 2’MeO6MF, general anaesthetics such as etomidate and propofol also showed distinct levels of relative efficacy across different injection ratios. Based on these results, we infer that β3γ2L receptors may form with different subunit stoichiometries, resulting in the complex pharmacology observed across different injection ratios. Moreover, the discovery that GABA and etomidate have direct actions at the α-lacking β3γ2L receptors raises questions about the structural requirements for their respective binding sites at GABAARs.  相似文献   

12.
The conserved leucine residues at the 9′ positions in the M2 segments of α1 (L264) and β1 (L259) subunits of the human GABAA receptor were replaced with threonine. Normal or mutant α1 subunits were co-expressed with normal or mutant β1 subunits in Sf9 cells using the baculovirus/Sf9 expression system. Cells in which one or both subunits were mutated had a higher ``resting' chloride conductance than cells expressing wild-type α1β1 receptors. This chloride conductance was blocked by 10 mm penicillin, a recognized blocker of GABAA channels, but not by bicuculline (100 μm) or picrotoxin (100 μm) which normally inhibit the chloride current activated by GABA: nor was it potentiated by pentobarbitone (100 μm). In cells expressing wild-type β1 with mutated α1 subunits, an additional chloride current could be elicited by GABA but the rise time and decay were slower than for wild-type α1β1 receptors. In cells expressing mutated β1 subunits with wild-type or mutated α1 subunits (αβ(L9′T) and α(L9′T)β(L9′T)), no response to GABA could be elicited: this was not due to an absence of GABAA receptors in the plasmalemma because the cells bound [3H]-muscimol. It was concluded that in GABAA channels containing the L9′T mutation in the β1 subunit, GABA-binding does not cause opening of channels, and that the L9′T mutation in either or both subunits gives an open-channel state of the GABAA receptor in the absence of ligand. Received: 17 April 1996/Revised: 5 July 1996  相似文献   

13.
Nicotine leads to both activation and desensitization (inactivation) of nicotinic acetylcholine receptors (nAChRs). This study tested the hypothesis that nicotine and a selective antagonist of β2*nAChRs would have similar effects on affective behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER) assay which evaluates the ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned stimulus (CS) co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US). During testing in the absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg) or a selective β2 subunit containing nAChR (β2*nAChR) antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHβE). There was a dose-dependent effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg) increased CER suppression ratios (SR) in these mice. DHβE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear−/anxiety-like behavior, these doses of nicotine and DHβE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHβE promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHβE that altered affective behavior had no effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHβE reversed SR in a CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This study provides evidence that inactivation of β2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests that smokers may be motivated to smoke in part to desensitize their β2*nAChRs. These data further identify β2*nAChR antagonism as a potential therapeutic strategy for relief of negative affect and anxiety.  相似文献   

14.
15.
16.
Enzymatic 5′-monophosphorylation and 5′-phosphatidylation of a number of β-l- and β-d-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5′-hydroxyl group of nucleoside; the second was the phospholipase d (PLD)-catalyzed transphosphatidylation of l-α-lecithin with a series of β-l- and β-d-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some β-l-nucleosides displayed similar or even higher substrate activity compared to the β-d-enantiomers.  相似文献   

17.
Abstract

β-D-pentofuranonucleoside derivatives of 2-azidoadenine and 6-azidopurines have been synthesized. The azido-tetrazolo tautomerism observed on such nucleoside analogues has been studied. The compounds were tested for their activity against HIV and HBV but they did not show significant antiviral effect.  相似文献   

18.
19.
The dynamics of amino acid side chains of uniformly 13C/15N-enriched ribonuclease T1 (RNase T1) have been investigated. Heteronuclear longitudinal relaxation rates, 1H/13C NOEs, and transverse cross-correlated cross-relaxation rates between the Sx and the SxIz1Iz2 operators (SIIS cross relaxation) [Ernst and Ernst (1994) J. Magn. Reson., A110, 202-213] have been determined in this study. New pulse sequences for measuring the longitudinal relaxation time and the heteronuclear NOE of aliphatic side chain carbon nuclei were developed using the CCONH type of magnetization transfer and 1HN detection. In addition, an improved pulse sequence for the determination of the SIIS cross relaxation is presented. For the analysis of the relaxation rates, the model of restricted rotational diffusion around the 1 dihedral angle has been applied [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. These techniques were used in order to describe the side chain dynamics of the small globular protein RNase T1 (104 amino acids, MW about 11 kDa). Qualitative values of microdynamical parameters were obtained for 73 out of 85 amino acid side chains (glycine and alanine residues excepted) whereas more quantitative values were derived for 67 -CH and -CH2 groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号