首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background aims. Acute liver failure (ALF), although rare, remains a rapidly progressive and frequently fatal condition. Acetaminophen (APAP) poisoning induces a massive hepatic necrosis and often leads to death as a result of cerebral edema. Cell-based therapies are currently being investigated for liver injuries. We evaluated the therapeutic potential of transplantation of bone marrow mononuclear cells (BMC) in a mouse model of acute liver injury. Methods. ALF was induced in C57Bl/6 mice submitted to an alcoholic diet followed by fasting and injection of APAP. Mice were transplanted with 10(7) BMC obtained from enhanced green fluorescent protein (GFP) transgenic mice. Results. BMC transplantation caused a significant reduction in APAP-induced mortality. However, no significant differences in serum aminotransferase concentrations, extension of liver necrosis, number of inflammatory cells and levels of cytokines in the liver were found when BMC- and saline-injected groups were compared. Moreover, recruitment of transplanted cells to the liver was very low and no donor-derived hepatocytes were observed. Mice submitted to BMC therapy had some protection against disruption of the blood-brain barrier, despite their hyperammonemia, and serum metalloproteinase (MMP)-9 activity similar to the saline-injected group. Tumor necrosis factor (TNF)-α concentrations were decreased in the serum of BMC-treated mice. This reduction was associated with an early increase in interleukin (IL)-10 mRNA expression in the spleen and bone marrow after BMC treatment. Conclusions. BMC transplantation protects mice submitted to high doses of APAP and is a potential candidate for ALF treatment, probably via an immunomodulatory effect on TNF-α production.  相似文献   

3.

Introduction

Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. A 24-week, double-blind, double-dummy, randomized, methotrexate (MTX)-controlled study was conducted to evaluate the efficacy and safety of CCII in the treatment of rheumatoid arthritis (RA).

Methods

Five hundred three RA patients were included in the study. Patients received either 0.1 mg daily of CCII (n = 326) or 10 mg once a week of MTX (n = 177) for 24 weeks. Each patient was evaluated for pain, morning stiffness, tender joint count, swollen joint count, health assessment questionnaire (HAQ), assessments by investigator and patient, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) by using the standard tools at baseline (week 0) and at weeks 12 and 24. Additionally, rheumatoid factor (RF) was evaluated at weeks 0 and 24. Measurement of a battery of biochemical parameters in serum, hematological parameters, and urine analysis was performed to evaluate the safety of CCII.

Results

Four hundred fifty-four patients (94.43%) completed the 24-week follow-up. In both groups, there were decreases in pain, morning stiffness, tender joint count, swollen joint count, HAQ, and assessments by investigator and patient, and all differences were statistically significant. In the MTX group, ESR and CRP decreased. RF did not change in either group. At 24 weeks, 41.55% of patients in the CCII group and 57.86% in the MTX group met the American College of Rheumatology 20% improvement criteria (ACR-20) and 16.89% and 30.82%, respectively, met the ACR 50% improvement criteria (ACR-50). Both response rates for ACR-20 and ACR-50 in the CCII group were lower than those of the MTX group, and this difference was statistically significant (P < 0.05). The DAS28 (disease activity score using 28 joint counts) values of the two treatment groups were calculated, and there was a statistically significant difference between the two treatment groups (P < 0.05). Gastrointestinal complaints were common in both groups, but there were fewer and milder side effects in the CCII group than in the MTX group. The incidence of adverse events between the two groups was statistically significant (P < 0.05).

Conclusions

CCII is effective in the treatment of RA and is safe for human consumption. CCII exerts its beneficial effects by controlling inflammatory responses through inducing oral tolerance in RA patients.

Trials Registration

Clinical trial registration number: ChiCTR-TRC-00000093.  相似文献   

4.
5.
The acute-phase proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) demonstrate high-level expression and pleiotropic biological effects, and contribute to the progression and persistence of rheumatoid arthritis (RA). Acid hydrarthrosis is also an important pathological characteristic of RA, and the acid-sensing ion channel 1a (ASIC1a) plays a critical role in acidosis-induced chondrocyte cytotoxicity. However, the roles of IL-1β and TNF-α in acid-induced apoptosis of chondrocytes remain unclear. Rat adjuvant arthritis and primary articular chondrocytes were used as in vivo and in vitro model systems, respectively. ASIC1a expression in articular cartilage was increased and highly colocalized with nuclear factor (NF)-κB expression in vivo. IL-1β and TNF-α could upregulate ASIC1a expression. These cytokines activated mitogen-activated protein kinase and NF-κB pathways in chondrocytes, while the respective inhibitors of these signaling pathways could partially reverse the ASIC1a upregulation induced by IL-1β and TNF-α. Dual luciferase and gel-shift assays and chromatin immunoprecipitation-polymerase chain reaction demonstrated that IL-1β and TNF-α enhanced ASIC1a promoter activity in chondrocytes by increasing NF-κB DNA-binding activities, which was in turn prevented by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate. IL-1β and TNF-α also decreased cell viability but enhanced LDH release, intracellular Ca2+ concentration elevation, loss of mitochondrial membrane potential, cleaved PARP and cleaved caspase-3/9 expression, and apoptosis in acid-stimulated chondrocytes, which effects could be abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1), ASIC1a-short hairpin RNA or calcium chelating agent BAPTA-AM. These results indicate that IL-1β and TNF-α can augment acidosis-induced cytotoxicity through NF-κB-dependent up-regulation of ASIC1a channel expression in primary articular chondrocytes.  相似文献   

6.
7.
INTRODUCTION: Antigen-presenting cells, like dendritic cells (DCs) and macrophages, play a significant role in the induction of an immune response and an imbalance in the proportion of macrophages, immature and mature DCs within the tumor could affect significantly the immune response to cancer. DCs and macrophages can differentiate from monocytes, depending on the milieu, where cytokines, like interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce DC differentiation and tumor necrosis factor (TNF)-alpha induce DC maturation. Thus, the aim of this work was to analyze by immunohistochemistry the presence of DCs (S100+ or CD1a+), macrophages (CD68+), IL-4 and TNF-alpha within the microenvironment of primary lung carcinomas. RESULTS: Higher frequencies of both immature DCs and macrophages were detected in the tumor-affected lung, when compared to the non-affected lung. Also, TNF-alpha-positive cells were more frequent, while IL-4-positive cells were less frequent in neoplastic tissues. This decreased frequency of mature DCs within the tumor was further confirmed by the lower frequency of CD14-CD80+ cells in cell suspensions obtained from the same lung tissues analyzed by flow cytometry. CONCLUSION: These data are discussed and interpreted as the result of an environment that does not oppose monocyte differentiation into DCs, but that could impair DC maturation, thus affecting the induction of effective immune responses against the tumor.  相似文献   

8.
Intravenous administration of a single dose (100 g/kg bw) of recombinant tumour necrosis factor- (TNF, cachectin) to rats increased the rate ofin vitro fatty acid synthesis in interscapular brown adipose tissue (IBAT) from both glucose and alanine, without changes in the oxidation of these substrates to14CO2. Lactate production and glycerol release were also unaffected by treatment with the cytokine. Additionally, the presence of TNF in the incubation media did not affect fatty acid synthesis, suggesting an indirect effect of the cytokine. The activities of different enzymes of glucose and alanine metabolism such as hexokinase, phosphofructokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase and alanine transaminase, did not suffer changes as a consequence of TNF administration. The same applied to the enzymatic activities involved in fatty acid synthesis such as fatty acid synthase, acetyl-CoA carboxylase and ATP-citrate lyase. Conversely, citrate levels in IBAT were increased in animals treated with TNF, suggesting that it could be the cause for the increased fatty acid synthesis in this tissue.  相似文献   

9.
Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x?≈?22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304—a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future.
Graphical Abstract Fullerene-material/TNF-α
  相似文献   

10.
Th1 cytokine-induced loss of oligodendrocytes (OLs) is associated with axonal loss in CNS demyelinating diseases such as multiple sclerosis (MS)that contributes to neurological disabilities in affected individuals. Recent studies indicated that, in addition to Th1-phenotype cytokines including tumor necrosis factor (TNF)-α, Th17 phenotype cytokine, interleukin (IL)-17 also involved in the development of MS. In this study, we investigated the direct effect of IL-17 on the survival of OLs in the presence of TNF-α and individually in vitro settings. Our findings suggest that IL-17 alone, however, was not able to affect the survival of OLs, but it exacerbates the TNF-α-induced OL apoptosis as compared with individual TNF-α treatment. This effect of cytokines was ascribed to an inhibition of cell-survival mechanisms, co-localization of Bid/Bax proteins in the mitochondrial membrane and caspase 8 activation mediated release of apoptosis inducing factor from mitochondria in treated OLs. In addition, cytokine treatment disturbed the mitochondrial membrane potential in OLs with corresponding increase in the generation of reactive oxygen species, which were attenuated by N-acetyl cysteine treatment. In addition, combining of these cytokines induced cell-cycle arrest at G1/S phases in OL-like cells and inhibited the maturation of OL progenitor cells that was attenuated by peroxisome proliferator-activated receptor-γ/-β agonists. Collectively, these data provide initial evidence that IL-17 exacerbates TNF-α-induced OL loss and inhibits the differentiation of OL progenitor cells suggesting that antioxidant- or peroxisome proliferator-activated receptor agonist-based therapies have potential to limit CNS demyelination in MS or other related demyelinating disorders.  相似文献   

11.
Intravenous administration of a single dose (20 g) of recombinant tumour necrosis factor- (TNF, cachectin) to rats decreased the rate of intestinal glucose absorption. In vivo, the oxidation of [U-14C]glucose to 14CO2 was significantly increased by the cytokine. In addition, [14C]lipid accumulation from [U-14C]glucose was increased both in liver and brown adipose tissue of the TNF-injected animals. The decrease observed in intestinal glucose absorption was not associated with changes in intestinal metabolism. There was no difference in glucose metabolism by isolated enterocytes from either control or TNF-injected rats whether in the absence or presence of different concentrations of the cytokine in the incubation medium. In contrast, tumour necrosis factor altered the rate of gastric emptying as measured by the gastrointestinal distribution of [3H]inulin following an intragastric glucose load. These results suggest that the cytokine profoundly alters glucose metabolism by increasing its whole-body oxidation rate and delaying intestinal absorption through a reduced gastric emptying.  相似文献   

12.
The gender difference in tumor necrosis factor-α (TNF-α) production in human neutrophils stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) was explored by using peripheral blood neutrophils from young men and women. As compared with female neutrophils, male neutrophils released greater amounts of TNF-α, and exhibited stronger activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase in response to LPS stimulation. LPS-induced TNF-α production was markedly enhanced by pretreatment of cells with IFN-γ, and IFN-γ-mediated priming in male neutrophils was significantly greater than that in female neutrophils. Male neutrophils showed higher expression of TLR4, but not IFN-γ receptors, than female neutrophils, and its expression was increased by stimulation with IFN-γ or IFN-γ plus LPS. These findings indicate that male neutrophils show higher responsiveness to stimulation with LPS and IFN-γ than female neutrophils, and suggest that the gender difference in neutrophil responsiveness to LPS and IFN-γ is partly responsible for that in the outcome of sepsis, in which premenopausal women show a favorable prognosis as compared with men.  相似文献   

13.
Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α) stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA) completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNF-α induced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.  相似文献   

14.
AimWe aimed to determine the changes in TNF-α expression and Malondialdehyde (MDA) level in a short time after irradiation. Furthermore, we evaluated the effect of melatonin on the modulation of TNF-α gene expression.BackgroundThe radio-sensitivity of the cervical spinal cord limits the dose of radiation which can be delivered to tumors in the neck region. There is increasing evidence that TNF-α has a role in the development of the acute phase of spinal cord injury.Materials/MethodsFour groups of rats were investigated. Group 1 (vehicle treatment) served as the control. Group 2 (radiation) was treated with the vehicle, and 30 min later, the rats were exposed to radiation. Group 3 (radiation + melatonin) was given an oral administration of melatonin (100 mg/kg body weight) and 30 min later exposed to radiation in the same manner as in group 2. Group 4 (melatonin-only) was also given an oral administration of melatonin (100 mg/kg body weight). 5 mg/kg of melatonin was administered daily to rats in groups 3 and 4, and the vehicle was administered daily to rats in groups 1 and 2.ResultsThree weeks after irradiation, TNF-α gene up-regulated almost 5 fold in the irradiated group compared to the normal group. TNF-α gene expression in the melatonin pretreatment group, compared to the radiation group, was significantly down-regulated 3 weeks after irradiation (p < 0.05). MDA levels increased after irradiation and then significantly decreased under melatonin treatment.ConclusionWe suggest that inhibition of TNF-α expression by oral administration of melatonin may be a therapeutic option for preventing radiation-induced spinal cord injury.  相似文献   

15.
AimsPerinatal hypoxic-ischemic insult has acute and long term deleterious effects on many organs including heart. Although tumor necrosis factor alpha (TNF-α) has been reported to increase soon after hypoxia, the inhibition of this mediator has not been documented. The aim of this study was to investigate the effects of a TNF-α inhibitor (etanercept) on contractility and ultrastructure of rat heart muscles exposed to hypoxia-ischemia during neonatal period.Main methodsForty-five seven-day old rats divided into three groups were included in this study. The right carotid arteries of Saline and Etanercept groups of rats were ligated and kept in a hypoxia chamber containing 8% oxygen for 2 h. Immediately after hypoxia, while Etanercept group was administered 10 mg/kg etanercept, Saline group had only saline intraperitoneally. The carotid arteries of rats in Sham group were located without ligation and hypoxia. Mechanical activity of heart was recorded and tissue samples were examined by electron microscopy in the sixteenth week following the hypoxia-ischemia.Key findingsWhile atrial contractile force in Etanercept group was similar to Sham group, there was significant decrease in Saline group (p < 0.001). However, there was only non-significant decrease in ventricular contractility of Saline group comparing to Sham group (p > 0.05). After hypoxia-ischemia, ultrastructural degenerative changes and mitochondrial damage in atriums of Etanercept group were significantly less severe than Saline group.SignificanceThis study demonstrated that neonatal hypoxia-ischemia caused long term cardiac dysfunction and ultrastructural degenerative changes in the heart of rats. TNF-α inhibitor administration soon after hypoxia-ischemia may have heart protective effect.  相似文献   

16.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

17.
Two models for prediction of the activity and stability of site-directed mutagenesis on tumor necrosis factor-α are established. The models are based on straightforward structural considerations, which do not require the elaboration of sitedirected mutagenesis on the protein core and the hydrophobic surface area by analyzing the pmperties of the mutated amino acid residues. The reliabilities of the models have been tested by analyzing the mutants of tumor necrosis factor-α (TNF-α) whose two leucine residues (L29, L157) were mutated. Based on these models, a TNFα mutant with high activity was created by molecular design.  相似文献   

18.
We previously reported that necrosis occurs predominantly in porcine renal tubular LLC-PK1 cells, when the cells were exposed transiently to a high concentration of cisplatin. Moreover, we demonstrated that generation of reactive oxygen species and subsequent production of tumor necrosis factor-α (TNF-α) through phosphorylation of p38 MAPK are implicated in the pathogenesis of cisplatin-induced renal cell injury. However, some TUNEL-positive cells appeared in renal proximal tubules of rats after systemic injection of cisplatin, suggesting an involvement of apoptosis. In the present study, we found in LLC-PK1 cells that both apoptosis and necrosis were elicited when the cells were exposed to 200 μM cisplatin for 1 h followed by incubation for 24 h in the presence of 20 μM cisplatin. The cisplatin-induced necrosis was largely attenuated by the antioxidant N-acetylcysteine, while apoptosis was prevented by the specific inhibitors for caspases-2, -8, and -3 and a p53 inhibitor pifithrin-α but not by the p38 MAPK inhibitor SB203580. On the other hand, SB203580 attenuated the cisplatin-induced increase in TNF-α production. These findings suggest that p53-mediated activations of caspases-2, -8 and -3 play a key role in cisplatin-induced renal cell apoptosis, while oxidative stress-induced TNF-α synthesis via p38 MAPK phosphorylation contributed to the necrosis.  相似文献   

19.
20.
In this study the green method for synthesizing selenium nanoparticles (SeNPs) is experienced, in which the leaf extract of Adiantum capillus was used as an effective chelating and capping agent for producing SeNPs. The characterization techniques that achieved to confirm the synthesis and the structure details of the SeNPs were: UV–Vis spectroscopy, FT-IR analysis, XRD, EDX and SEM analysis. The biological activity of the synthesized SeNPs were tested and compared to the crude extract of Adiantum capillus on gentamicin model of nephrotoxicity in Wistar rats. Sera were used to test the pro-inflammatory cytokines Tumor necrosis factor alpha (TNF-α) and Interleukin beta (IL-β) levels. Histopathology and immunohistochemistry analysis for the apoptosis regulator protein (Bcl-2) and the interstitial filament protein (Vimentin) were performed. Results revealed that the synthesized SeNPs peak appeared at 400–430 nm wave length with crystallite particle size is around 37 nm. The predominant shape is spherical and cubic at different magnification levels with a narrow size distribution of 22.04–128.43 nm. The synthesized SeNPs showed a strong protective effect against gentamicin induced toxic effects to the rat’s kidneys obtained from the (kidney function parameters, histopathology evaluation, recovery of the pro-inflammatory cytokines IL-β and TNF-α level with retrieval of Bcl-2 and vimentin protein levels proximate to the vehicle control groups). Due to the significant protective effect of SeNPs, it considered much better than the crude extract of Adiantum capillus in the treatment of kidney injury; however, additional studies are necessary to find the precise mechanism of their action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号