首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine 5'-triphosphate disodium (ATP) gated P2X receptors, especially the subtype P2X(3), play a key role in transmission of pain signals in neuropathic pain, ATP has been documented to play a significant role in the progression of pain signals, suggesting that control of these pathways through electroacupuncture (EA) is potentially an effective treatment for chronic neuropathic pain. EA has been accepted to effectively manage chronic pain by applying the stimulating current to acupoints through acupuncture needles. To determine the significance of EA on neuropathic pain mediated by P2X(3) receptors in the dorsal root ganglion (DRG) neurons, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded, and the expression of P2X(3) receptors in the DRG neurons was assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). In addition, the currents which were evoked in DRG neurons isolated from rats following chronic constriction injury (CCI) by the P2X(3) receptors agonists i.e. ATP and α,β-methylen-ATP (α,β-meATP) were examined through the experimental use of whole cell patch clamp recording. The present study demonstrates that EA treatment can increase the MWT and TWL values and decrease the expression of P2X(3) receptors in DRG neurons in CCI rats. Simultaneously, EA treatment attenuates the ATP and α,β-meATP evoked currents. EA may be expected to induce an apparent induce analgesic effect by decreasing expression and inhibiting P2X(3) receptors in DRG neurons of CCI rats. There is a similar effect on analgesic effect between rats with contralateral EA and those with ipsilateral EA.  相似文献   

2.
Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αβ-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKC-dependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.  相似文献   

3.
ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI.  相似文献   

4.
Increasing evidence supports that acupuncture intervention is an effective approach for intraoperative and postoperative pain. Neuron–microglia crosstalk, mediated by the purinergic P2X7 receptor (R)/fractalkine/CX3CR1 cascade in the spinal cord dorsal horn, plays a pivotal role in pain processing. However, its involvement in the analgesic effect of electroacupuncture (EA) remains unclear. In this study, a rat neck-incision pain model was established by making a longitudinal incision along the midline of the neck and subsequent repeated mechanical stimulation. EA stimulation was applied to bilateral LI18, LI4-PC6, or ST36-GB34. The thermal pain threshold, cervicospinal ATP concentration, expression levels of purinergic P2XR and P2YR subunits mRNAs, and fractalkine, CX3CR1 and p38 MAPK proteins, were detected separately. The neck incision induced strong thermal hyperalgesia and upregulation of spinal ATP within 48 h. No significant change was found in thermal hyperalgesia after a single session of EA intervention. However, a single session of EA dramatically enhanced the neck incision-induced upregulation of ATP and upregulated the expression of P2X7R, which was reversed by two sessions of EA. Two sessions of EA at bilateral LI18 or LI4-PC6 attenuated hyperalgesia significantly, accompanied with downregulation of P2X7R/fractalkine/ CX3CR1 signaling after three sessions of EA. EA stimulation of LI18 or LI4-PC6 alleviates thermal hyperalgesia in neck-incision pain rats, which may be associated with its effects in regulating the neck incision-induced increase of ATP and P2X7R and subsequently suppressing fractalkine/CX3CR1 signaling in the cervical spinal cord.  相似文献   

5.
Liu S  Xu C  Li G  Liu H  Xie J  Tu G  Peng H  Qiu S  Liang S 《Neurochemistry international》2012,60(6):565-572
Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1 μM, an inhibitor of VEGF receptors). The stain values of VEGFR-2, P2X(2) and P2X(3) protein expression in L4/5 DRG of CCI treated with Vatalanib group were significantly decreased compared with those in CCI group (p<0.01). Vatalanib can alleviate chronic neuropathic pain by decreasing the activation of VEGF on VEGFR-2 and the positive interaction between the up-regulated VEGFR-2 and P2X(2/3) receptors in the neuropathic pain signaling.  相似文献   

6.
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.  相似文献   

7.
Type 2 diabetes mellitus (T2DM) accounts for more than 90% of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. Sinomenine is a natural bioactive component extracted from the Sinomenium acutum and has anti-inflammatory effects. The aim of our study was to investigate the effects of sinomenine on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with sinomenine were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and mRNA in T2DM rat DRG were higher compared with those of the control, while those in T2DM rats treated with sinomenine were significantly lower compared with those of the T2DM rats. Sinomenine significantly inhibited P2X3 agonist ATP-activated currents in HEK293 cells transfected with the P2X3 receptor. Sinomenine decreased the phosphorylation and activation of P38MAPK in T2DM DRG. Therefore, sinomenine treatment may suppress the up-regulated expression and activation of the P2X3 receptor and relieve the hyperalgesia potentiated by the activation of P38MAPK in T2DM rats.  相似文献   

8.
目的:采用2型糖尿病神经病理性痛大鼠,探讨其脊髓背角小胶质细胞极化情况以及消退素D1(RvD1)缓解大鼠2型糖尿病神经病理性痛的机制。方法:雄性SD大鼠高糖高脂饲养,腹腔注射链脲佐菌素(STZ),制备大鼠2型糖尿病神经病理性痛模型。将2型糖尿病神经病理性痛大鼠随机分为3组(n=36):2型糖尿病神经病理性痛组(D组)、2型糖尿病神经病理性痛注射RvD1组(R组)和溶剂对照组(S组)。R、S组分别于注射STZ 14 d后蛛网膜下腔置管,3 d后R、S组分别给予RvD1 10μl(10 ng/μl)和100%乙醇10μl,每天1次,连续14 d,D组不做任何处理。另取36只正常大鼠为正常对照组(N组),普通饲料喂养。鞘内给药后第1、3、7、14天时测定机械缩足阈值(MWT)和热缩足潜伏期(TWL),各组随机取9只大鼠处死,取L4-6脊髓膨大,采用Western blot法检测小胶质细胞M1、M2型极化标记物,即诱导型一氧化氮合酶(iNOS)、精氨酸酶1(Arg1)的表达。结果:与N组比较,D、S组第1、3、7、14天时MWT降低、TWL缩短,脊髓背角Arg1表达减少,iNOS表达增多(P < 0.05);与D组比较,R组第7、14天时MWT升高、TWL延长,脊髓背角Arg1表达增多,iNOS表达减少(P < 0.05);D组与S组各指标比较差异无统计学意义。结论:RvD1促进小胶质细胞M2型极化并缓解大鼠2型糖尿病神经病理性痛。  相似文献   

9.
10.
ATP, acting via P2 purinergic receptors, is a known mediator of inflammatory and neuropathic pain. There is increasing evidence that the ATP-gated P2X4 receptor (P2X4R) subtype is a locus through which activity of spinal microglia and peripheral macrophages instigate pain hypersensitivity caused by inflammation or by injury to a peripheral nerve. The present article highlights the recent advances in our understanding of microglia-neuron interactions in neuropathic pain by focusing on the signaling and regulation of the P2X4R. We will also develop a framework for understanding converging lines of evidence for involvement of P2X4Rs expressed on macrophages in peripheral inflammatory pain.  相似文献   

11.
Zhang A  Xu C  Liang S  Gao Y  Li G  Wei J  Wan F  Liu S  Lin J 《Neurochemistry international》2008,53(6-8):278-282
Neuropathic pain usually is persistent and no effective treatment. ATP plays an important role in the initiation of pain. P2X(3) receptors are localized in the dorsal root ganglion (DRG) neurons and activated by extracellular ATP. Sodium ferulate (SF) is an active principle from Chinese herbal medicine and has anti-inflammatory activities. This study observed the effects of SF on the nociceptive facilitation of the primary sensory afferent after chronic constriction injury (CCI) mediated by P2X(3) receptor. In this study, the content of ATP in DRG neurons was measured by high-performance liquid chromatography (HPLC). P2X(3) agonist-activated currents in DRG neurons was recorded by the whole-cell patch-clamp skill. The expression of P2X(3) mRNA in DRG neurons was analyzed by in situ hybridization. The ATP content of DRG was increased after CCI. In CCI rats treated with SF, the content of ATP in DRG neurons was reduced. SF decreased the increment of P2X(3) agonist-activated currents and P2X(3) mRNA expression in DRG neurons during CCI. SF may inhibit the initiation of pain and primary afferent sensitization mediated by P2X(3) receptor during CCI.  相似文献   

12.
Noradrenaline (NA), released in association with sympathetic nerve sprouting into the dorsal root ganglion (DRG) after peripheral nerve injury, may enhance neuropathic pain. ATP serves as a pain mediator; however, NA‐regulated ATP mobilizations in the DRG is far from understanding. In the present study, we analyzed ATP mobilizations in acutely dissociated rat DRG neurons by recording single‐channel currents through P2X receptor channels as an ATP biosensor in an outside‐out patch‐clamp configuration and by monitoring real‐time enzymatic NADPH fluorescent imaging, and examined the role for β3 adrenoceptors in allodynia using an in vivo rat model. We show here that NA stimulates ATP release from DRG neurons as mediated via β3 adrenoceptors linked to Gs protein involving PKA activation, to cause allodynia. This represents a fresh regulatory pathway for neuropathic pain relevant to noradrenergic transmission in the DRG. J. Cell. Physiol. 224: 345–351, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.  相似文献   

14.
目的:研究坐骨神经结扎损伤后疼痛受体P2X3在相应背根神经节(dorsal root ganglia,DRG)内的表达变化情况。方法:选取健康成年SD大鼠35只,建立右侧坐骨神经结扎损伤模型,采用免疫组织化学和图像分析技术检测相应L4-6DRG内P2X3的表达情况。结果:正常大鼠L4-6DRG内有大量P2X3免疫阳性神经元,坐骨神经结扎后3d P2X3表达即下调,3,7,14,21和28d其表达呈进行性下降趋势,各时间点与正常和假手术对照比较差异均有统计学意义(P<0.05)。结论:坐骨神经结扎后P2X3在L4-6DRG内表达明显下调,提示其可能在神经源性疼痛中发挥一定的作用。  相似文献   

15.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   

16.
P2X3 receptors (P2XRs), as members of the purine receptor family, are deeply involved in chronic pain sensation and therefore, specific, competitive antagonists are of great interest for perspective pain management. Heretofore, Schild plot analysis has been commonly used for studying the interaction of competitive antagonists and the corresponding receptor. Unfortunately, the steady-state between antagonist and agonist, as a precondition for this kind of analysis, cannot be reached at fast desensitizing receptors like P2X3R making Schild plot analysis inappropriate. The aim of this study was to establish a new method to analyze the interaction of antagonists with their binding sites at the rapidly desensitizing human P2X3R. The patch-clamp technique was used to investigate the structurally divergent, preferential antagonists A317491, TNP-ATP and PPADS. The P2X1,3-selective α,β-methylene ATP (α,β-meATP) was used as an agonist to induce current responses at the wild-type (wt) P2X3R and several agonist binding site mutants. Afterwards a Markov model combining sequential transitions of the receptor from the closed to the open and desensitized mode in the presence or absence of associated antagonist molecules was developed according to the measured data. The P2X3R-induced currents could be fitted correctly with the help of this Markov model allowing identification of amino acids within the binding site which are important for antagonist binding. In conclusion, Markov models are suitable to simulate agonist antagonist interactions at fast desensitizing receptors such as the P2X3R. Among the antagonists investigated, TNP-ATP and A317491 acted in a competitive manner, while PPADS was identified as a (pseudo)irreversible blocker.  相似文献   

17.
18.
There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1–7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1–7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1–7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.  相似文献   

19.
目的:探讨脊髓自噬功能与大鼠2型糖尿病神经病理性疼痛(DNP)的关系。方法:雄性SD大鼠(42只)高糖高脂饲养8周,腹腔单次注射链脲佐菌素(STZ)制备大鼠2型糖尿病模型。两周后检测机械缩足阈值(MWT)和热缩足潜伏期(TWL),降至基础值80%以下者为2型糖尿病神经病理性疼痛大鼠,记为DNP组(24只);未降至基础值80%以下者为2型糖尿病无神经病理性疼痛大鼠,记为DA组(18只)。另取18只大鼠为对照(control,C)组,普通饲料喂养。于确定DA与DNP分组后的第3、7和14天,测定机械缩足阈值(MWT)和热缩足潜伏期(TWL),并在行为学检测结束后各组随机取6只大鼠处死,取L4~L6脊髓膨大,采用Western blot法检测自噬特异性蛋白微管相关蛋白1(Beclin-1)、微管相关蛋白1轻链3(LC3)和P62的表达。另取6只7 d DNP组大鼠采用免疫荧光双染法检测脊髓背角P62与小胶质细胞、星形胶质细胞、神经元的共表达情况。结果:连续8周喂养高糖高脂饲料的SD大鼠的血浆胰岛素水平升高,胰岛素敏感指数下调,表明出现胰岛素抵抗;在腹腔注射STZ后,血糖升高达到2型糖尿病诊断标准(≥16.7 mmol/L);与C组、DA组比较,DNP组大鼠在第3、7和14天时MWT降低,TWL缩短,并且脊髓背角LC3-Ⅱ、Beclin-1表达上调,P62表达下降(P<0.05)。免疫荧光双染色显示,P62在脊髓背角表达,主要与神经元共存,少量与小胶质细胞共存,几乎不与星形胶质细胞共表达。结论:2型糖尿病神经病理性疼痛大鼠脊髓LC3-Ⅱ、Beclin-1和P62表达的改变提示脊髓自噬功能激活;脊髓背角中神经元自噬激活在2型糖尿病大鼠DNP的发生和发展起着关键作用。  相似文献   

20.
It remains unclear as to whether P2Y1 purinergic receptor (P2Y1R) and the molecules that act downstream, such as extracellular signal-regulated protein kinase 1/2 (ERK1/2), are involved in the development of cancer-induced bone pain (CIBP) in vivo. Here, we investigated the role of the P2Y1R in the modulation of CIBP-associated nociception in spinal cord and dorsal root ganglia (DRG). A CIBP model was established by inoculating Walker 256 gland carcinoma cells into the tibia of female rats. Tactile allodynia and spontaneous pain were assessed using von Frey filaments and ambulatory scores. The results showed that both the paw withdrawal latency to tactile allodynia and the ambulatory score to spontaneous pain were significantly different between the CIBP group and the sham group on days 7-9 post-inoculation (P< 0.01). Furthermore, rats in the CIBP group also showed a progressive increase in ambulatory score, which is different from the sham group (P< 0.01). Furthermore, P2Y1R mRNA and phosphorylated ERK1/2 (p-ERK1/2) protein expression levels were increased in the spinal dorsal horn and DRG of the CIBP group relative to the sham group. However, intrathecal injection of the P2Y1R antagonist MRS2179 decreased P2Y1R mRNA and p-ERK1/2 protein expression in the spinal dorsal horn and DRG (P< 0.01). These results provide evidence that the inhibition of P2Y1R-mediated ERK1/2 phosphorylation in the spinal dorsal horn and DRG can attenuate nociception transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号