首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Ascorbic acid (AsA) is the most abundant antioxidant in plants and plays a role in responding to oxidative stress. It has been shown that AsA plays a role in protecting against abiotic stresses. Rice seedlings stressed with 5 μM CdCl2 showed typical Cd toxicity (chlorosis and increase in malondialdehyde content). Rice seedlings pretreated with heat shock at 45°C (HS) or H2O2 under non-HS conditions resulted in the increase in ascorbic acid (AsA) content and the AsA/dehydroascorbate ratio in rice leaves. Exogenous application of AsA or L-galactonone-1, 4-lactone (GalL), a biosynthetic precursor of AsA, under non-HS conditions, which resulted in an increase in AsA content in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with imidazole, an inhibitor of NADPH oxidase, under HS conditions significantly decreased H2O2 and AsA contents in leaves and reduced subsequent Cd tolerance of rice seedlings. We also observed that pretreatment with lycorine, which is known to inhibit the conversion of GalL to AsA, significantly inhibited HS-induced AsA accumulation in leaves and reduced HS-induced protection against subsequent Cd stress of rice stress. It appears that HS- or H2O2-induced protection against subsequent Cd stress of rice seedlings is mediated through AsA. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in AsA. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in AsA content, which in turn protects rice seedlings from oxidative damage caused by Cd.  相似文献   

2.
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100???M Se (Na2SeO4, sodium selenate) for 24?h. Two concentrations of CdCl2 (0.5 and 1.0?mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48?h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H2O2 levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5?mM CdCl2, while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0?mM CdCl2), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5?mM CdCl2) and then decreased at 1.0?mM severe stress (1.0?mM CdCl2). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H2O2 levels. However, in most cases, pretreatment with 50???M Se showed better results compared to pretreatment with 100???M Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

3.
Effect of nitrogen (N) deficiency on antioxidant status and Cd toxicity in rice seedlings was investigated. N deficiency resulted in a reduction of shoot growth but not root growth. The contents of N-containing compounds such as nitrate, chlorophyll, and protein decreased in leaves of rice seedlings grown under N deficiency. Accumulation of abscisic acid and H2O2 in leaves was induced by N deficiency. The content of ascorbate and the activities of ascorbate peroxidase, glutathione reductase, and catalase in N-deficient leaves were lower than their respective control leaves. However, glutathione content was not affected and superoxide dismutase activity was increased by N deficiency. Cd toxicity in N-deficient seedlings was more pronounced than that in N-sufficient ones. Pretreatment with ascorbate or L-galactono-1,4-lactone, a biosynthetic precursor of ascorbate resulted in a reduction of Cd toxicity enhanced by N deficiency. N deficiency also resulted in an enhancement of Cd uptake in rice seedlings. The possible mechanism of Cd toxicity enhanced by N deficiency is discussed.  相似文献   

4.
Cd-tolerant and Cd-sensitive rice cultivars were used to study the role of NH4 + accumulation in Cd-induced toxicity. NH4 + accumulation seems to be involved in regulating the toxicity of rice seedlings caused by CdCl2. This conclusion was based on the observations that (a) on treatment with CdCl2, NH4 + content increased rapidly in the leaves of the Cd-sensitive cultivar (cv. Taichung Native 1, TN1) but not in the Cd-tolerant cultivar (cv. Tainumg 67, TNG67), (b) pretreatment with abscisic acid (ABA) enhanced Cd tolerance and reduced Cd-induced NH4 + accumulation in TN1 seedlings, (c) exogenous application of the ABA biosynthesis inhibitor, fluridone, decreased Cd tolerance and increased NH4 + content in leaves of TNG67, (d) exogenous application of phosphinothricin, an inhibitor of glutamine synthetase (GS), which resulted in NH4 + accumulation in the leaves, also induced toxicity similar to Cd in TN1 seedlings. Evidence is presented to show that Cd-induced NH4 + accumulation in TN1 leaves is attributable to a decrease in GS activity. Since Cd-treated TN1 leaves had higher glutamine and glutamate contents than control leaves, it is unlikely that glutamine (or glutamate) depletion is the mechanism which regulates Cd-induced toxicity.  相似文献   

5.
Cadmium toxicity of rice leaves is mediated through lipid peroxidation   总被引:8,自引:0,他引:8  
Oxidative stress, in relation to toxicity of detached rice leaves,caused by excess cadmium was investigated. Cd content inCdCl2-treated detached rice leaves increased with increasingdurationof incubation in the light. Cd toxicity was followed by measuring the decreasein chlorophyll and protein. CdCl2 was effective in inducing toxicityand increasing lipid peroxidation of detached rice leaves under both light anddark conditions. These effects were also observed in rice leaves treated withCdSO4, indicating that the toxicity was indeed attributed to cadmiumions. Superoxide dismutase (SOD), ascorbate peroxidase (APOD), and glutathionereductase (GR) activities were reduced by excess CdCl2 in the light.The changes in catalase and peroxidase activities were observed inCdCl2-treated rice leaves after the occurrence of toxicity in thelight. Free radical scavengers reduced CdCl2-induced toxicity and atthe same time reduced CdCl2-induced lipid peroxidation and restoredCdCl2-decreased activities of SOD, APOD, and GR in the light. Metalchelators (2,2-bipyridine and 1,10-phenanthroline) reducedCdCl2 toxicity in rice leaves in the light. The reduction ofCdCl2 toxicity by 2,2-bipyridine (BP) is closely associatedwith a decrease in lipid peroxidation and an increase in activities ofantioxidative enzymes. Furthermore, BP-reduced toxicity of detached riceleaves,induced by CdCl2, was reversed by adding Fe2+ orCu2+, but not by Mn2+ or Mg2+.Reduction of CdCl2 toxicity by BP is most likely mediated throughchelation of iron. It seems that toxicity induced by CdCl2 mayrequire the participation of iron.  相似文献   

6.
The production of H2O2 in detached rice leaves of Taichung Native 1 (TN1) caused by CdCl2 was investigated. CdCl2 treatment resulted in H2O2 production in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase (NOX), prevented CdCl2-induced H2O2 production, suggesting that NOX is a H2O2-genearating enzyme in CdCl2-treated detached rice leaves. Phosphatidylinositol 3-kinase inhibitors wortmanin (WM) or LY294002 (LY) inhibited CdCl2-inducted H2O2 production in detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY, suggesting that phosphatidylinositol 3-phosphate is required for Cd-induced H2O2 production in detached rice leaves. Nitric oxide donor sodium nitroprusside (SNP) was also effective in reducing CdCl2-inducing accumulation of H2O2 in detached rice leaves. Cd toxicity was judged by the decrease in chlorophyll content. The results indicated that DPI, IMD, WM, LY, and SNP were able to reduce Cd-induced toxicity of detached rice leaves. Twelve-day-old TN1 and Tainung 67 (TNG67) rice seedlings were treated with or without CdCl2. In terms of Cd toxicity (leaf chlorosis), it was observed that rice seedlings of cultivar TN1 are Cd-sensitive and those of cultivar TNG67 are Cd-tolerant. On treatment with CdCl2, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Prior exposure of TN1 seedlings to 45oC for 3 h resulted in a reduction of H2O2 accumulation, as well as Cd tolerance of TN1 seedlings treated with CdCl2. The results strongly suggest that Cd toxicity of detached leaves and leaves attached to rice seedlings are due to H2O2 accumulation.  相似文献   

7.
Cadmium (Cd) is one of the most dangerous environmental pollutants, among other things, affecting plant mineral composition. Thus, in this study, we investigated the changes in potassium (K) concentration in Cd-treated rice (Oryza sativa L.) seedlings of two cultivars. On treatment with 5 μM CdCl2, the Cd concentration increased in the shoot and roots of Cd-sensitive cultivar (cv. Taichung Native 1, TN1) but not or slightly in the Cd-tolerant cultivar (cv. Tainung 67, TNG67). The decrease in K concentration in the shoot and roots of TN1 caused by Cd was more pronounced than that of TNG67. Exogenous addition of KCl decreased Cd concentration and reduced Cd toxicity of TN1 seedlings. Evidence presented in this study suggests that the improvement of K status is able to reduce toxicity of rice seedlings to CdCl2.  相似文献   

8.
The present study examined the response of antioxidant systems to NaCl stress and the relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. NaCl treatment caused an increase in the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in roots of rice seedlings, but had no effect on the activities of superoxide dismutase (SOD) and catalase (CAT). There were detectable differences in APX and GR isoenzymes between control and NaCl-treated roots. Levels of activity for SOD and CAT isoenzymes did not change in NaCl-stressed roots compared with the control roots. NaCl treatment produced an increase in H2O2, ascorbate (AsA), dehydro-ascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) levels. Treatment with 50 m M Na-gluconate (whose anion is not permeable to membrane) led to a similar Na+ level in roots to that with 100 m M NaCl. It was found that treatment with 50 m M Na-gluconate affected H2O2, AsA, and DHA levels, APX and GR activities, OsAPX and OsGR mRNA induction in the same way as 100 m M NaCl. These observed changes seem to be mediated by Na+ toxicity and not by Cl toxicity. On the other hand, it was found that NaCl, but not Na-gluconate and NaNO3, caused an increase in GSH and GSSG levels, indicating that Cl, rather than Na+, is responsible for the NaCl-increased GSH and GSSG levels in roots of rice seedlings.  相似文献   

9.
10.
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.  相似文献   

11.
Changes in protein and amino acid contents in Cd-treated rice (Oryza sativa L.) seedlings of two cultivars were investigated. By assessing the decrease in chlorophyll content in the second leaves as an indicator of Cd toxicity, it was seen that cv. Tainung 67 (TNG 67) seedlings were apparently more tolerant to Cd than cv. Taichung Native 1 (TN 1). Following treatment with CdCl2, protein content decreased with a progressive and substantial increase of protease activity and total amino acids in TN 1, but not in TNG 67. The patterns of individual amino acids in Cd-treated leaves of both cultivars were examined and, only in cv. TN 1 a substantial increase in the content of all amino acids analysed, except for methione, was recorded. The role of these changes in endogenous amino acids in Cd toxicity of TN 1 leaves is discussed.  相似文献   

12.
Plant ascorbate peroxidases (APXs), enzymes catalyzing the dismutation of H2O2 into H2O and O2, play an important role in reactive oxygen species homeostasis in plants. The rice genome has eight OsAPXs, but their physiological functions remain to be determined. In this report, we studied the function of OsAPX2 gene using a T-DNA knockout mutant under the treatment of drought, salt and cold stresses. The Osapx2 knockout mutant was isolated by a genetic screening of a rice T-DNA insertion library under 20% PEG-2000 treatment. Loss of function in OsAPX2 affected the growth and development of rice seedlings, resulting in semi-dwarf seedlings, yellow-green leaves, leaf lesion mimic and seed sterility. OsAPX2 expression was developmental- and spatial-regulated, and was induced by drought, salt, and cold stresses. Osapx2 mutants had lower APX activity and were sensitive to abiotic stresses; overexpression of OsAPX2 increased APX activity and enhanced stress tolerance. H2O2 and MDA levels were high in Osapx2 mutants but low in OsAPX2-OX transgenic lines relative to wild-type plants after stress treatments. Taken together, the cytosolic ascorbate peroxidase OsAPX2 plays an important role in rice growth and development by protecting the seedlings from abiotic stresses through scavenging reactive oxygen species.  相似文献   

13.
The role of reduced glutathione (GSH) in heat shock (HS)- and H2O2-induced protection of rice (Oryza sativa L., cv. Taichung 1) seedlings from Cd stress was investigated. HS- and H2O2-pretreatment resulted in an increase in GSH content in leaves of rice seedlings. Addition of exogenous GSH under non-HS conditions, which resulted in an increase in GSH in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, which effectively inhibited GSH content induced by HS and H2O2, reduced subsequent Cd tolerance. Furthermore, the effect of BSO on HS- and H2O2-induced GSH accumulation and toxicity by subsequent Cd stress can be reversed by the addition of GSH. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in GSH. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in GSH content, which in turn protects rice seedlings from oxidative damage caused by Cd.  相似文献   

14.
l-Galactono-1,4-lactone (GalL) dehydrogenase (GLDH) is an enzyme that catalyzes the last step of l-ascorbate (AsA) biosynthesis in plants. To re-evaluate the importance of the enzyme and the possibility of manipulating the AsA content in plants, a cDNA encoding GLDH from sweet potato was introduced into tobacco plants by Agrobacterium-mediated transformation under the control of a CaMV 35S promoter. Protein blot analysis revealed the elevation of GLDH protein contents in three GLDH-transformed lines. Furthermore, these transgenic lines showed 6- to 10-fold higher GLDH activities in the roots than the non-transformed plants, SR1. Despite the elevated GLDH activity, the AsA content in the leaves did not change in all lines; i.e., the AsA content in GLDH-transformed lines was 3–7 μmol g−1 FW, comparable to that in the non-transformed plants. Incubation of leaf discs in a GalL solution led to a rapid 2- to 3-fold increase in the AsA content in both GLDH-transformed and non-transformed plants in the same manner. These results suggest that the supply of GalL is a crucial factor for determining the AsA pool size and that the upstream genes in the AsA biosynthetic pathway are responsible for enhancing the AsA content in plants.  相似文献   

15.
The effect of lanthanum on the metabolism of ascorbate (AsA) and glutathione (GSH) in the leaves of maize seedlings under cadmium stress was investigated. The findings showed that Cd remarkably increased electrolyte leakage (EL), the activities of ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and γ-glutamylcysteine synthetase, and the content of reduced AsA, reduced GSH, total AsA, total GSH, malondialdehyde (MDA), and Cd, compared with control. However, Cd significantly decreased the dry biomass of roots and shoots. Treatment with La + Cd evidently increased the activities of above enzymes except MDHAR, the content of reduced AsA, reduced GSH, total AsA and total GSH, and the dry biomass of roots and shoots, compared with Cd stress alone. Meanwhile, treatment with La + Cd remarkably decreased EL and the content of Cd and MDA compared with Cd stress alone. Our results suggested that La could be used as a regulator to improve the Cd tolerance of maize for its role in the alleviation of Cd-induced oxidative damage by regulating the metabolism of AsA and GSH.  相似文献   

16.
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate–glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of ?1.0 and ?2.1 MPa for 24–72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2??, H2O2, and HO? in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate–glutathione cycle is associated with water deficit tolerance in rice.  相似文献   

17.
Cadmium toxicity is reduced by nitric oxide in rice leaves   总被引:24,自引:1,他引:24  
We evaluate the protective effect of nitric oxide (NO) against Cadmium (Cd) toxicity in rice leaves. Cd toxicity of rice leaves was determined by the decrease of chlorophyll and protein contents. CdCl2 treatment resulted in (1) increase in Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in reduced form glutathione (GSH) and ascorbic acid (ASC) contents, and (5) increase in the specific activities of antioxidant enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). NO donors [N-tert-butyl-α-phenylnitrone, 3-morpholinosydonimine, sodium nitroprusside (SNP), and ASC + NaNO2] were effective in reducing CdCl2-induced toxicity and CdCl2-increased MDA content. SNP prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and ASC, and increase in the specific activities of antioxidant enzymes. SNP also prevented CdCl2-induced accumulation of NH4 +, decrease in the activity of glutamine synthetase (GS), and increase in the specific activity of phenylalanine ammonia-lyase (PAL). The protective effect of SNP on CdCl2-induced toxicity, CdCl2-increased H2O2, NH4 +, and MDA contents, CdCl2-decreased GSH and ASC, CdCl2-increased specific activities of antioxidant enzymes and PAL, and CdCl2-decreased activity of GS were reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that protective effect by SNP is attributable to NO released. Reduction of CdCl2-induced toxicity by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.  相似文献   

18.
Root growth of the seedlings of maize cultivars Premia and Blitz exposed to 2 μM cadmium (Cd), nickel (Ni) or both metals acting simultaneously (Cd + Ni) for 72 h was significantly reduced but not ceased. The effect was more pronounced in the seedlings of the cv. Blitz. The heavy metals (HMs) contents increased significantly in the roots. Simultaneous application of metals had an antagonistic effect on either Cd or Ni uptake in Premia but not in Blitz. In control roots the contents of ascorbic acid (AsA) and dehydroascorbic acid (DHA) were lower and gluthatione (GSH) content was higher in Premia than in Blitz. A decrease of AsA content was induced by all metal treatments in Premia but only by Cd + Ni in Blitz while an increase was induced by single metals in this cultivar. All metal treatments increased DHA contents in both cultivars. GSH content decreased significantly in Premia treated with Cd or Cd + Ni, and in Blitz treated with Ni. Unlike the contents of AsA, DHA and GSH, the increased metal concentrations in root cells did not affect the membrane potential (E M). The changes in antioxidant contents depended on both, maize genotypes and HMs treatments. Nevertheless, the results indicated a role of antioxidative system in minimizing the effects of oxidative stress and protecting cell membranes in both maize cultivars.  相似文献   

19.
Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.  相似文献   

20.
In a pot-soil culture ameliorative effect of sulphur (S) (0 or 40 mg S kg−1 soil) on cadmium (Cd) (0, 25, 50 and 100 mg Cd kg−1 soil)-induced growth inhibition and oxidative stress in mustard (Brassica campestris L.) cultivar Pusa Gold was studied. Cadmium at 100 mg kg−1 soil caused maximum increase in the contents of Cd and thiobarbituric acid reactive substances (TBARS) in leaves. Maximum reductions in growth (plant dry mass, leaf area), chlorophyll content, net photosynthetic rate (PN) and the contents of ascorbate (AsA), glutathione (GSH) were observed with 100 mg Cd kg−1 soil compared to control. The application of S helped in reducing Cd toxicity, which was greater for 25 and 50 mg Cd kg−1 soil) compared to 100 mg Cd kg−1 soil. Addition of S to Cd-treated plants showed decrease in Cd and TBARS content in leaves and restoration of growth and photosynthesis through increase in the contents of AsA and GSH. Net photosynthetic rate and plant dry mass were strongly and positively correlated with the contents of AsA and GSH. It is suggested that S may ameliorate Cd toxicity and protects growth and photosynthesis of mustard involving AsA and GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号