首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The use of animal and plant derived raw materials in mammalian cell culture processes may provide a possible route of entry for adventitious contaminants such as mycoplasma. Mycoplasma contaminations of cell culture represent a serious challenge to the production of biotechnology derived therapeutics. The slow growing nature of mycoplasma can disguise their infection of cultures since cells may continue to proliferate, though at reduced levels and with lesser output of engineered protein. Rapid identification of mycoplasma contaminated cell cultures and materials enables a faster response time to prevent the spread of the contamination. We describe here the comparison of different mycoplasma detection methods: two nucleic acid-based technologies, the standard mycoplasma culture procedure, and a hybrid culture-quantitative PCR assay. In this study, a cell line infected with two species of mycoplasma was used to compare the different detection methods. Our data demonstrates that the two nucleic acid-based techniques are robust methods for detection of mycoplasma and have similar detection capability. In contrast, no mycoplasma was detected in the standard culture assay or in a hybrid culture-quantitative PCR assay. This shows a potential limitation of the culture assay that relies on the ability of mycoplasma to grow in broth media.  相似文献   

2.
Melampsora medusae (Mm), one of the causal agents of poplar rust, is classified as an A2 quarantine pest for European Plant Protection Organization (EPPO) and its presence in Europe is strictly controlled. Two formae speciales have been described within Mm, Melampsora medusae f. sp. deltoidae (Mmd), and Melampsora medusae f. sp. tremuloidae (Mmt) on the basis of their pathogenicity on Populus species from the section Aigeiros (e.g. Populus deltoides) or Populus (e.g. Populus tremuloides), respectively. In this study, a real-time polymerase chain reaction (PCR) assay was developed allowing the detection of Mmd, the forma specialis that is economically harmful. A set of primers and hydrolysis probe were designed based on sequence polymorphisms in the large ribosomal RNA subunit (28S). The real-time PCR assay was optimized and performance criteria of the detection method, i.e. sensitivity, specificity, repeatability, reproducibility, and robustness, were assessed. The real-time PCR method was highly specific and sensitive and allowed the detection of one single urediniospore of Mmd in a mixture of 2 mg of urediniospores of other Melampsora species. This test offers improved specificity over currently existing conventional PCR tests and can be used for specific surveys in European nurseries and phytosanitary controls, in order to avoid introduction and spread of this pathogen in Europe.  相似文献   

3.
A PCR enzyme-linked immunosorbent assay (ELISA) assay was applied to the detection of Campylobacter jejuni and Campylobacter coli in environmental water samples after enrichment culture. Bacterial cells were concentrated from 69 environmental water samples by using filtration, and the filtrates were cultured in Campylobacter blood-free broth. After enrichment culture, DNA was extracted from the samples by using a rapid-boiling method, and the DNA extracts were used as a template in a PCR ELISA assay. A total of 51 samples were positive by either PCR ELISA or culture; of these, 43 were found to be positive by PCR ELISA and 43 were found to be positive by culture. Overall, including positive and negative results, 59 samples were concordant in both methods. Several samples were positive in the PCR ELISA assay but were culture negative; therefore, this assay may be able to detect sublethally damaged or viable nonculturable forms of campylobacters. The method is rapid and sensitive, and it significantly reduces the time needed for the detection of these important pathogens by 2 to 3 days.  相似文献   

4.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5′-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejuni tested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria.  相似文献   

5.
Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5′nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.  相似文献   

6.
Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories.  相似文献   

7.
Malaria is largely a preventable and curable disease. However, a delay or an inappropriate treatment can result in serious adverse outcomes for patient. Rapid, simple and cost-effective diagnostic tests that can be easily adapted and rapidly scaled-up at the field or community levels are needed. In this study, accelerated detection methods for the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) dihydrofolate reductase–thymidylate synthase were developed based on the loop-mediated isothermal amplification (LAMP) method. The developed methods included the use of species-specific biotinylated primers to amplify LAMP amplicons, which were then hybridized to specific FITC-labeled DNA probes and visualized on a chromatographic lateral flow dipstick (LFD). The total LAMP–LFD assay time was approximately 1.5 h. The LAMP–LFD assays showed similar detection limit to conventional PCR assay when performed on plasmid DNA carrying the malaria dhfr-ts genes. The LAMP–LFD showed 10 folds higher detection limit than PCR when performed on genomic DNA samples from Pf and Pv parasites. The dhfr-ts LAMP–LFD assays also have the advantages of reduced assay time and easy format for interpretation of results.  相似文献   

8.
We have developed a novel PCR-based assay for individual and simultaneous detection of three major pathogens (microsporidians, nucleopolyhedrovirus (NPV) and densovirus (DNV)) infecting the silkworm, Bombyx mori. Multiplex PCR, using three primer pairs, two of which were designed from the conserved regions of 16S small subunit ribosomal RNA gene of microsporidians, and polyhedrin gene of NPVs respectively, and a third primer pair designed from the internal sequences of B. mori DNVs (BmDNV), showed discrete and pathogen specific PCR products. The assay showed high specificity and sensitivity for the pathogenic DNA. Under optimized PCR conditions, the assay yielded a 794 bp DNA fragment from Nosema bombycis, 471 bp fragment from B. mori NPV (BmNPV) and 391 bp fragment from BmDNV. Further, this detection method was successfully applied to other silkworm species such as Antheraea mylitta and Samia cynthia ricini, in detecting same or similar pathogens infecting them. This method is a valuable supplement to the conventional microscopic diagnostic methods and can be used for the early detection of pathogens infecting silkworms. Furthermore it can assist research and extension centers for the safe supply of disease-free silkworms to farmers.  相似文献   

9.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37°C for 24 h, followed by 42°C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

10.
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.  相似文献   

11.
This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.  相似文献   

12.
This paper reports on the first successful molecular detection and quantification of soil protozoa. Quantification of heterotrophic flagellates and naked amoebae in soil has traditionally relied on dilution culturing techniques, followed by most-probable-number (MPN) calculations. Such methods are biased by differences in the culturability of soil protozoa and are unable to quantify specific taxonomic groups, and the results are highly dependent on the choice of media and the skills of the microscopists. Successful detection of protozoa in soil by DNA techniques requires (i) the development and validation of DNA extraction and quantification protocols and (ii) the collection of sufficient sequence data to find specific protozoan 18S ribosomal DNA sequences. This paper describes the development of an MPN-PCR assay for detection of the common soil flagellate Heteromita globosa, using primers targeting a 700-bp sequence of the small-subunit rRNA gene. The method was tested by use of gnotobiotic laboratory microcosms with sterile tar-contaminated soil inoculated with the bacterium Pseudomonas putida OUS82 UCB55 as prey. There was satisfactory overall agreement between H. globosa population estimates obtained by the PCR assay and a conventional MPN assay in the three soils tested.  相似文献   

13.
Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence.Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.  相似文献   

14.
The commercially available genetically modified plants authorized worldwide and therefore the target sequences for molecular detection of genetically modified organisms (GMOs) are ever-increasing. The European Union has implemented a set of very strict procedures for approval to grow, import and/or utilize GMOs as food or food ingredients. As a result, GMO laboratories and food production industry currently are forced to apply different methods to test raw material and complex processed food products. Three exogenous genes (the 35 s promoter of the cauliflower mosaic virus (35 s), nos terminator from Agrobacterium tumefaciens (nos), and the neomycin phosphotransferase II (nptII) gene) are commonly used in GMO detection. In this paper, a multiplex quantitative real-time PCR (qPCR) system was developed which allows simultaneously detection of the three exogenous genes in one reaction tube. The determined limits for the multiplex qPCR assays were 4 copies/reaction in maize samples. The specificity of the assays was demonstrated to be 100% according to the detection results of 23 genetically modified (GM) crops and 97 complex processed food products. The validation data show the individual PCR efficiency was accredited with negligible impacts between three detection channels in 7500 fluorescence quantitative PCR machine. These results indicate that this high-throughput multiplex qPCR method which combined with a reference gene is feasible for screening of GMOs, even for the processed food.  相似文献   

15.
Mycobacterium ulcerans is a slow-growing environmental bacterium that causes a severe skin disease known as Buruli ulcer. PCR has become a reliable and rapid method for the diagnosis of M. ulcerans infection in humans and has been used for the detection of M. ulcerans in the environment. This paper describes the development of a TaqMan assay targeting IS2404 multiplexed with an internal positive control to monitor inhibition with a detection limit of less than 1 genome equivalent of DNA. The assay improves the turnaround time for diagnosis and replaces conventional gel-based PCR as the routine method for laboratory confirmation of M. ulcerans infection in Victoria, Australia. Following analysis of 415 clinical specimens, the new test demonstrated 100% sensitivity and specificity compared with culture. Another multiplex TaqMan assay targeting IS2606 and the ketoreductase-B domain of the M. ulcerans mycolactone polyketide synthase genes was designed to augment the specificity of the IS2404 PCR for the analysis of a variety of environmental samples. Assaying for these three targets enabled the detection of M. ulcerans DNA in soil, sediment, and mosquito extracts collected from an area of endemicity for Buruli ulcer in Victoria with a high degree of confidence. Final confirmation was obtained by the detection and sequencing of variable-number tandem repeat (VNTR) locus 9, which matched the VNTR locus 9 sequence obtained from the clinical isolates in this region. This suite of new methods is enabling rapid progress in the understanding of the ecology of this important human pathogen.  相似文献   

16.
A duplex real-time PCR assay was designed for simultaneous detection and genotyping of Mycoplasma pneumoniae (M. pneumoniae). The detection/typing performance of this duplex PCR method, targeting specific genes for M. pneumoniae type 1 (mpn 459) and type 2 (mpna 5864), was compared to that of the previously published MpP1 real-time PCR assay and the genotyping method for the adhesin P1 gene (mpn 141). A total of 1,344 throat swab specimens collected from patients in Beijing, China were tested for M. pneumoniae by bacterial culture, MpP1 real-time PCR assay, and our duplex PCR assay, and positive detection rates of 26.9%, 34.4%, and 33.7%, respectively, were obtained. The duplex PCR method demonstrated high sensitivity and accuracy for detecting and genotyping M. pneumoniae, and significant differences in genotyping ability were observed when compared to the conventional P1 gene-based method. M. pneumoniae type 1 was the predominate genotype from 2008 to 2012 in Beijing, and a shift from type 1 to type 2 began to occur in 2013. To our knowledge, this is the first reported incidence of a type shift phenomenon of M. pneumoniae clinical isolates in China. These genotyping results provide important information for understanding recent changes in epidemiological characteristics of M. pneumoniae in Beijing.  相似文献   

17.
Sacbrood virus (SBV) is a picorna-like virus that affects honey bees (Apis mellifera) and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV) in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB) probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.  相似文献   

18.
Microcystin-producing cyanobacteria cause serious water quality problems worldwide, which has led to growing pressure for more intensive monitoring. Molecular biology methods that are based on identification and enumeration of biosynthetic genes, such as quantitative PCR, show promise in this respect. To be practical in a wide range of settings, these methods need to be usable also by laboratory personnel who do not have previous experience in PCR setup. Here we present a real-time quantitative mcyB dry chemistry PCR assay capable of identifying the three globally most common microcystin-producing cyanobacterial genera, Anabaena, Microcystis and Planktothrix. It minimizes the amount of liquid handling and avoids direct contact with the PCR reagents at the time of analysis. Large quantities of virtually identical chips can be manufactured, improving the comparability of results. Using the dry chemistry PCR chips, freshwater environmental samples from Finnish and Estonian lakes, rivers and reservoirs were analyzed for mcyB. The chip format was found to be highly suitable for water sample analysis due to its ease-of-use, good sensitivity and amplification efficiency. Significant positive correlation (Spearman's rank correlation, ρ > 0.66, P < 0.001) was observed between combined mcyB copy numbers from Microcystis, Anabaena, Planktothrix and total microcystin concentrations, regardless of the method used to measure the toxins (ELISA or LC–MS). Positive correlations were observed also for single lakes.  相似文献   

19.
In Europe, alternative methods for the detection of food-borne pathogens can be used instead of the standard ISO/CEN reference protocol, if validated according to the protocol outlined in ISO 16140, 2003. In this study, the performance of two novel methods for the detection of Salmonella sp. using real-time PCR technology in tandem with an adapted two-step enrichment protocol were assessed and validated against a reference culture method, ISO 6579, 2004. The DNA and RNA real-time PCR assays amplified a 270 bp region of the hilA gene of Salmonella enterica serovars, and incorporated an internal amplification control (IAC) which was co-amplified with the hilA gene to monitor potential PCR inhibitors and ensure successful amplification. The inclusivity and exclusivity of the hilA primer set was examined for both the DNA and RNA methods and detected the 30 S. enterica serovars but not the 30 non-salmonellae strains. The inoculation of meat carcass swabs with five different S. enterica serovars at five different inocula, indicated both PCR methods were able to detect between 1 and 10 CFU per carcass swab. The real-time DNA PCR assay performed as well as the traditional cultural method in detecting Salmonella sp. in artificially contaminated salad, chocolate, fish and cheese samples. The relative accuracy, relative sensitivity and relative specificity of the DNA PCR real-time method were determined to be 98.5, 98.1 and 100%, respectively. The DNA method was further validated in a collaborative inter-laboratory trial according to ISO 16140, 2003. The validated methods provide an accurate means for the rapid detection and tracking of S. enterica serovars giving equivalent results to the standard method within three days, thus providing an alternative testing method to the reference microbiological method. The real-time PCR methodology not only offers significant time-saving advantages compared to traditional methods, it can also be applied to a wide range of samples types.  相似文献   

20.
A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号