首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The objective of this study was to investigate whether abscisic acid (ABA), a second messenger in chilling stress responses, is involved in brassinosteroids (BRs)-induced chilling tolerance in suspension cultured cells from Chorispora bungeana. The suspension cells were treated with 24-epibrassinolide (EBR), ABA, ABA biosynthesis inhibitor fluridone (Flu) and EBR in combination with Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels and antioxidant defense system were analyzed. The results showed that EBR treatment markedly alleviated the decrease of cell viability and the increases of ion leakage and lipid peroxidation induced by chilling stress, suggesting that application of EBR could improve the chilling tolerance of C. bungeana suspension cultures. In addition, similar results were observed when exogenous ABA was applied. Treatment with Flu alone and in combination with EBR significantly suppressed cell viability and increased ion leakage and lipid peroxidation under low temperature conditions, indicating that the inhibition of ABA biosynthesis could decrease the chilling tolerance of C. bungeana suspension cultures and the EBR-enhanced chilling tolerance. Further analyses showed that EBR and ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. However, Flu application differentially blocked these protective effects of EBR. Moreover, EBR was able to mimic the effect of ABA by markedly increasing ABA content in the suspension cells under chilling conditions, whereas the EBR-induced ABA accumulation was inhibited by the addition of Flu. Taken together, these results demonstrate that EBR may confer chilling tolerance to C. bungeana suspension cultured cells by enhancing the antioxidant defense system, which is partially mediated by ABA, resulting in preventing the overproduction of ROS to alleviate oxidative injury induced by chilling.  相似文献   

2.
Brassinosteroids (BRs), a class of plant steroid hormones, play a significant role in the amelioration of various biotic and abiotic stresses. In order to further explore and elaborate their roles in plants subjected to chilling stress, suspension cultured cells of Chorispora bungeana with or without 24-epibrassinolide (EBR) application were exposed to 4 and 0°C for 5 days. The EBR treated cells exhibited higher viability after exposure to low temperatures compared with the control. Under chilling stress, reactive oxygen species (ROS) levels and lipid peroxidation were increased in the cultured cells, which were significantly inhibited by EBR application. The activities of antioxidative enzymes such as ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were increased during chilling treatments, and these increases were more significant in the EBR applied suspension cells. The EBR treatment also greatly enhanced contents of ascorbic acid (AsA) and reduced glutathione (GSH) under chilling stress. From these results, it can be concluded that EBR could play the positive roles in the alleviation of oxidative damage caused by ROS overproduction through enhancing antioxidant defense system, resulting in improving the tolerance of C. bungeana suspension cultures to chilling stress.  相似文献   

3.
Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.  相似文献   

4.
The inhibitory effect of nickel on the growth of wheat (Triticum aestivum L.) seedlings and the alleviation of nickel toxicity by nitric oxide (NO) were investigated. Nickel (Ni) at 100 μM caused striking reduction in seedling growth and significant overproduction of MDA and H2O2 in the roots. Supplementation with NO donor sodium nitroprusside (SNP) could significantly reverse the inhibitory effect of nickel in a dose-dependent manner. K3Fe(CN)6, a SNP analogue, which does not release NO, had no ameliorative effect on Ni toxicity in wheat.. In addition, application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, could dramatically counteract the stimulatory effects of SNP on the growth of wheat seedling roots under Ni stress, confirming that NO rather than other compounds derived from SNP was responsible for the alleviating effect of Ni toxicity. Further results showed that SNP enhanced the activities of guaiacol peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1..1..5.1..1), glutathione reductase (GR, EC 1.6.4.2), and glutathione S-transferase (GST, EC 2.5.1.18) in wheat seedling roots under nickel stress, while no significant difference in the activity of catalase (CAT, EC 1.11.1.6) in wheat roots supplemented with SNP or without it was observed. These results clearly indicate that NO has a protective role in Ni-induced oxidative damage through modulation of antioxidant enzymes.  相似文献   

5.
The roles of superoxide and NO in the NaCl-induced upregulation on antioxidant enzyme activity were investigated in NaCl-tolerant cotton calli. Both NaCl and paraquat treatments resulted in significant increases in superoxide production. The activities of ascorbate peroxidase (APX), catalase, glutathione reductase (GR), and peroxidase also increased significantly within 2 h after applying the stress. Pre-treatment with the superoxide scavenger, N-acetyl l-cysteine (NAC), completely removed the superoxide and inhibited the upregulation of antioxidant enzyme activity in the tissue treated with either NaCl or paraquat. NaCl stress also resulted in a significant increase in the NO level. Experiments were also carried out to measure antioxidant enzyme activity in cotton calli exposed to NO, the NO producer sodium nitroprusside (SNP), and the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO) under different salt stress conditions. The direct addition of NO gas produced no change in the activities of catalase and GR and caused a significant decrease in APX activity when compared to the controls. When the calli was treated with SNP in the absence of NaCl stress, APX and GR activities decreased significantly and catalase activity was only slightly higher than the control. Treatment with SNP in the presence of NaCl stress resulted in a significant decrease in APX activity, and GR and APX activities were not significantly different from those observed in the NaCl treatment alone. In the presence of PTIO, the activities of all three enzymes increased in the presence or absence of NaCl stress. These results suggest that reactive oxygen species (ROS) such as superoxide radicals may serve as signal transduction molecules to switch “on” the early NaCl-induced up-regulation of antioxidant enzyme activity, while NO may play a role in switching “off” the response after other mechanisms in the cascade of events responsible for NaCl tolerance have been activated.  相似文献   

6.
Endophytic bacteria have been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. The objective of this study was to evaluate the effect of an endophytic bacterium, Clavibacter sp. strain Enf12, in regenerated plantlets of Chorispora bungeana subjected to chilling stress (0°C). Aerial biomass and physiological markers for chilling stress, such as electrolyte leakage, lipid peroxidation, reactive oxygen species (ROS) accumulation, proline content and activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7) and ascorbate peroxidase (EC 1.11.1.11), were assessed. We demonstrated that Clavibacter sp. strain Enf12 was capable of colonizing internal tissues of regenerated plantlets of C. bungeana and maintained stable population densities under both normal (20°C) and chilling (0°C) conditions. Inoculation enhanced plantlet growth under both conditions and significantly attenuated the chilling-induced electrolyte leakage, lipid peroxidation and ROS accumulation. The endophyte significantly increased the activities of antioxidant enzymes and proline content in C. bungeana plantlets under chilling stress. These findings suggest that Clavibacter sp. strain Enf12 inoculation stimulates the growth of C. bungeana plantlets and improves their tolerance to chilling stress through enhancing the antioxidant defense system.  相似文献   

7.
Osmotic stress associated with drought and salinity is a serious problem that inhibits the growth of plants mainly due to disturbance of the balance between production of ROS and antioxidant defense and causes oxidative stress. In this research, sodium nitroprusside (SNP) was used as NO donor in control and drought-stressed plants, and the role of NO in reduction of oxidative damages were investigated. In this study, we observed that SNP pretreatment prevented drought-induced decrease in RWC and membrane stability index, increase in lipid peroxidation and lipoxygenase activity and increase in hydrogen peroxide content. However, pretreatment of plants with SNP and phenyl 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a NO scavenger) reversed the protective effects of SNP suggesting that protective effect by SNP is attributable to NO release. In addition, the relationship between these defense mechanisms and activity of antioxidant enzymes were checked. Results showed that in drought-stressed plants ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase activities were elevated over the controls, while GR decreased under drought condition. Activity of GPX was inhibited under SNP pretreatment in drought-stressed plants specially, while the activity of APX and GR increased under SNP pretreatment and it seems that under this condition APX had a key role of detoxification of ROS in tomato plants. This result corresponded well with ASA and total acid-soluble thiols content. Therefore, reduction of drought-induced oxidative damages by NO in tomato leaves is most likely mediated through either NO ability to scavenge active oxygen species or stimulation of antioxidant enzyme such as APX.  相似文献   

8.
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.  相似文献   

9.
Previous studies suggest that abscisic acid (ABA) stimulates the activities of antioxidant enzymes under normal and chilling temperature and enhanced chilling resistance in Stylosanthes guianensis. The objective of this study was to test whether nitric oxide (NO) is involved in the ABA-induced activities of the antioxidant enzymes in Stylosanthes guianensis due to its nature as a second messenger in stress responses. Plants were treated with NO donors, ABA, ABA in combination with NO scavengers or the nitric oxide synthase (NOS) inhibitor and their effects on the activity of antioxidant enzymes and NO production were compared. The results showed that ABA increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The effect of ABA on antioxidant enzyme activities was suppressed by the NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA), and the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO). NO content increased after 5 h of ABA treatment. The NO-scavenger, PTIO, and the NOS-inhibitor, L-NNA, inhibited the accumulation of NO in ABA-treated Stylosanthes guianensis. NO donor treatment enhanced the activities of SOD, CAT, and APX. The results suggested that NO was involved in the ABA-induced activities of SOD, CAT, and APX in Stylosanthes guianensis. ABA triggered NO production that may lead to the stimulation of antioxidant enzyme activities.  相似文献   

10.
11.
The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves. Such increases were blocked by pretreatment with each of the two NOS inhibitors. Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO, but did not affect the ABA-induced increases in activity of NOS, indicating that ABA-induced NO production originated from sources of NOS and NR. ABA- and H(2)O(2)-induced increases in expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by pretreatments with the NO scavenger, inhibitors of NOS and NR, indicating that NO is involved in the ABA- and H(2)O(2)-induced subcellular antioxidant defense reactions. On the other hand, NO donor sodium nitroprusside (SNP) reduced accumulation of H(2)O(2) induced by ABA, and c-PTIO reversed the effect of SNP in decreasing the accumulation of H(2)O(2). SNP induced increases in activities of subcellular antioxidant enzymes, and the increases were substantially prevented from occurring by the pretreatment with c-PTIO. These results suggest that ABA induces production of H(2)O(2) and NO, which can up-regulate activities of the subcellular antioxidant enzymes, to prevent overproduction of H(2)O(2) in maize plants. There is a negative feedback loop between NO and H(2)O(2) in ABA signal transduction in maize plants.  相似文献   

12.
Effect of sodium nitroprusside (SNP), a donor of nitric oxide (NO) was examined in two wheat (Triticum aestivum L.) cultivars, C 306 (heat tolerant) and PBW 550 (comparatively heat susceptible) to study the extent of oxidative injury and activities of antioxidant enzyme in relation to high temperature (HT) stress. HT stress resulted in a marked decrease in membrane thermostability (MTS) and 2, 3, 5-triphenyl tetrazolium chloride (TTC) cell viability whereas content of lipid peroxide increased in both the cultivars. The tolerant cultivar C 306 registered less damage to cellular membranes compared to PBW 550 under HT stress. Activities of antioxidant enzymes viz, superoxide dismutase, catalase, ascorbate peroxidase, guaicol peroxidase and glutathione reductase increased with HT in both the cultivars. Following treatment with SNP, activities of all antioxidant enzymes further increased in correspondence with an increase in MTS and TTC. Apparently, lipid peroxide content was reduced by SNP more in shoots of heat tolerant cultivar C 306 indicating better protection over roots under HT stress. The up-regulation of the antioxidant system by NO possibly contributed to better tolerance against HT induced oxidative damage in wheat.  相似文献   

13.
干旱胁迫下黄土高原4种乡土禾草抗氧化特性   总被引:5,自引:0,他引:5  
单长卷  韩蕊莲  梁宗锁 《生态学报》2012,32(4):1174-1184
采用盆栽实验,对干旱胁迫下黄土高原4种乡土禾草冰草、长芒草、无芒隐子草和白羊草叶片过氧化氢(H2O2)、丙二醛(MDA)含量、抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽过氧化物酶(GPX)活性和非酶抗氧化物质还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)含量进行了测定。 结果表明:随着干旱胁迫程度的加剧,4种乡土禾草叶片H2O2、MDA含量均呈增加趋势,这说明它们均遭受了干旱所造成的氧化胁迫,且干旱程度越大其遭受的氧化胁迫也越大。由于4种乡土禾草均为禾本科植物并生存于相同的生态环境中,它们在抗氧化特性上具有一定共性。在60%FC和45%FC干旱胁迫下,4种乡土禾草均可以通过增加抗氧化酶SOD、CAT、APX、GR、DHAR、MDHAR、GPX活性和非酶抗氧化物质AsA含量来抵御干旱所造成的氧化胁迫。由于种属差异,4种乡土禾草的抗氧化特性也存在差异。在60%FC和45%FC干旱胁迫下,冰草、无芒隐子草和白羊草还通过增加非酶抗氧化物质Car含量增强抗氧化能力,长芒草和白羊草则还可通过增加POD活性抵御干旱。在60%FC干旱胁迫下,冰草还可通过增加非酶抗氧化物质GSH含量提高其抗氧化性。采用隶属函数法对4种乡土草种抗氧化能力的综合评价表明,冰草的抗氧化能力最强,其次为无芒隐子草和白羊草,长芒草的抗氧化能力最差。  相似文献   

14.
Dune reed (DR) is the more tolerant ecotype of reed to environmental stresses than swamp reed (SR). Under osmotic stress mediated by polyethylene glycol (PEG-6000), the suspension culture of SR showed higher ion leakage, and more oxidative damage to the membrane lipids and proteins was observed compared with the relatively tolerant DR suspension culture. Treatment with sodium nitroprusside (SNP) can significantly alleviated PEG-induced ion leakage, thiobarbituric acid reactive substances (TBARS) and carbonyl contents increase in SR suspension culture. The levels of H(2)O(2) and O(2)(-) were reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were increased in both suspension cultures in the presence of SNP under osmotic stress, but lipoxygenase (LOX) activity was inhibited. 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific Nitric oxide (NO) scavenger, blocked the SNP-mediated protection. Depletion of endogenous NO with PTIO strongly enhanced oxidative damage in DR compared with that of PEG treatment alone, whereas had no effect on SR. Moreover, NO production increased significantly in DR while kept stable in SR under osmotic stress. Taken together, these results suggest that PEG induced NO release in DR but not SR can effectively protect against oxidative damage and confer an increased tolerance to osmotic stress in DR suspension culture.  相似文献   

15.
The effects of nitric oxide (NO) on chilling tolerance (freezing injury, ice nucleation activity, contents of hydrogen peroxide and superoxide anion, and lipid peroxidation level) and the activities of apoplastic antioxidant enzymes (peroxidase and superoxide dismutase) were investigated in the leaves of maize (Zea mays) exposed to short-term chilling. NO treatment was carried out through spraying of sodium nitroprusside (SNP), which is a donor of NO, in concentrations of 0.0, 0.1 and 1 μM on the leaves of 10-day plants. The plants then were transferred into the chilling condition (10/7 °C) 2 days before the harvesting of leaves (14th and 21th days). Application of 0.1 μM NO had more effect on the alleviation by decreasing the freezing injury in maize at least for 11 days after the application. Both concentrations of NO generally increased ice nucleation activity of apoplastic proteins extracted from leaves. The SNP applications decreased the contents of reactive oxygen species such as hydrogen peroxide and superoxide anion and the level of lipid peroxidation, while further increasing the activities of the apoplastic antioxidant enzymes studied. The results show that exogenous NO treatment provides important contributions to increasing the chilling tolerance of maize by regulating the biochemical mechanisms of chilling response, including apoplastic antioxidant enzymes. It can be seen that the NO treatment can play positive roles in alleviating chilling-induced damage in maize. Therefore, it is suggested that NO treatments may contribute to research studies related to diminishing chilling-induced damage in agricultural applications.  相似文献   

16.
Salicylic acid (SA) and nitric oxide (NO) are reported to alleviate the damaging effects of stress in plants rather similarly when applied at appropriate low concentrations. An experiment was therefore conducted to study the impact of SA, sodium nitroprusside (SNP; as NO donor), and methylene blue (MB; as a guanylate cyclase inhibitor) on wheat seedling performance under osmotic stress. Osmotic stress significantly reduced shoot fresh weight (SFW), chlorophyll contents (Chla, Chlb, total Chl), and membrane stability index (MSI) and also increased malondialdehyde (MDA) level, lipoxygenase (LOX) activity, and hydrogen peroxide production. Moreover, enzymatic antioxidant activities including superoxide dismutase, guaiacol peroxidase, and glutathione reductase activity were enhanced under osmotic stress. On the contrary, SA or SNP pretreatment reduced the damaging effects of osmotic stress by further enhancing the antioxidant activities that led to increased SFW, Chl, and MSI and reduced MDA level and LOX activity. However, pretreatment of plants with MB reversed or reduced the protective effects of SA and SNP suggesting that the protective effects were likely attributed to NO signaling. Therefore, NO may act as downstream of SA signaling in reduction of induced oxidative damage in wheat seedlings.  相似文献   

17.
Nitric oxide (NO) and 5-aminolevulinic acid (5ALA) play fundamental roles in plant responses to environmental stresses, but their cross-talk in antioxidant defense in cold-stressed Elymus nutans Griseb. have not been investigated. We herein report that 5ALA and NO donor, sodium nitroprusside (SNP), alleviated cold stress-induced plant growth inhibition and lipid peroxidation in roots of two E. nutans ecotypes (Damxung, DX and Zhengdao, ZD). However, application of an NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (PTIO) differentially blocked these protective effects indicating that an inhibition of NO accumulation reduced 5ALA-enhanced cold resistance. Application of exogenous 5ALA or NO markedly up-regulated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, enhanced reduced glutathione accumulation and reduced glutathione to oxidized glutathione ratio, activated plasma membrane (PM) H+-ATPase, and reduced Na+/K+ ratio in roots of the two E. nutans ecotypes. Moreover, in the presence of 5ALA, nitric oxide synthase (NOS) activity and NO release in cold-resistant DX were higher than those in cold-sensitive ZD. Conversely, both NO treatment and inhibition of endogenous NO accumulation by PTIO or NOS inhibitor Nω-nitro-L-arginine did not induce 5ALA production. These results suggest that NO might be acting as a downstream signal to mediate 5ALA-induced cold resistance by activating antioxidant defense and PM H+-ATPase and maintaining Na+ and K+ homeostasis.  相似文献   

18.
Jatropha curcas L. is a sustainable energy plant with great potential for biodiesel production, and low temperature is an important limiting factor for its distribution and production. In this present work, chill hardening-induced chilling tolerance and involvement of antioxidant defense system were investigated in J. curcas seedlings. The results showed that chill hardening at 10 or 12 °C for 1 and 2 days greatly lowered death rate and alleviated electrolyte leakage as well as accumulation of the lipid peroxidation product malondialdehyde (MDA) of J. curcas seedlings under severe chilling stress at 1 °C for 1–7 days, indicating that the chill hardening significantly improved chilling tolerance of J. curcas seedlings. Measurement of activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and the levels of the antioxidants ascorbic acid (AsA) and glutathione (GSH) showed the chill hardening at 12 °C for 2 days could obviously increase the activities of these antioxidant enzymes and AsA and GSH contents in the hardened seedlings. When the hardened and non-hardening (control) seedlings were subjected to severe chilling stress at 1 °C for 1–7 days, the chill-hardened seedlings generally maintained significantly higher activities of the antioxidant enzymes SOD, APX, CAT, POD, and GR, and content of the antioxidants AsA and GSH as well as ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)], when compared with the control without chill hardening. All above-mentioned results indicated that the chill hardening could enhance the chilling tolerance, and the antioxidant defense system plays an important role in the chill hardening-induced chilling tolerance in J. curcas seedlings.  相似文献   

19.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

20.
The present study aimed at investigating the effects of foliar applied nitric oxide (as SNP [sodium nitroprusside]) on sulfur (glutathione reductase, guaiacol peroxidase, and glutathione S-transferase) and nitrate assimilation (nitrite and nitrate reductase) pathway enzymes in maize (Zea mays L.) exposed to water deficit conditions. The seedlings of a drought tolerant (NK8711) and sensitive (P1574) maize hybrid were applied with various SNP doses (0, 50, 100, 150, and 200 µM) under normal and drought stress conditions. Foliar spray of 100 µM markedly improved water status and chlorophyll contents and alleviated drought-induced oxidative damages through increased antioxidant (catalase, ascorbate peroxidase, and superoxide dismutase) activities in both maize hybrids. Moreover, exogenous SNP supply increased nitrite and nitrate reductase activities and upregulated glutathione reductase, glutathione S-transferase, and guaiacol peroxidase compared to no SNP supply. Interestingly, the negative effects of excess NO generation at high SNP doses (150, 200 µM) were more pronounced in P1574 than NK8711 leading to lower biomass accumulation in drought-sensitive hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号