首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity was investigated in a hydroponic cultivation system. Short-term exposure of bean (Phaseolus vulgaris) plants to 20 μM Cd inhibited biomass production and intensively increased accumulation of Cd in both roots and leaves. At leaf level, Cd significantly decreased mineral ions, chlorophyll and carotenoids concentrations. Concomitantly, Cd enhanced electrolyte leakage, H2O2 content and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. SA pretreatment decreased the uptake and the transport of Cd, alleviated the Cd-induced inhibition of nutrient absorption and led to a significant increase of chlorophyll and carotenoid content. SA application alleviated the oxidative damages as evidenced by the lowered H2O2 and MDA content. SA particularly induced an increase in both CAT and APX activities accompanied by a significant reduction in SOD and POD activities. As important antioxidants, ascorbate and glutathione contents in bean leaves exposed to cadmium were significantly decreased by SA treatment. These results reveal the potentiating effect of salicylic acid in regulating cadmium induced oxidative stress in bean plants.  相似文献   

2.
Salicylic acid (SA) as a signal molecule mediates many biotic and environmental stress-induced physiological responses in plants. In this study, we investigated the role of SA in regulating Hg-induced oxidative stress in the roots of alfalfa (Medicago sativa). Plants pretreated with 0.2 mM SA for 12 h and subsequently exposed to 10 μM Hg2+ for 24 h displayed attenuated toxicity to the root. The SA-promoted root growth was correlated with decreased lipid peroxidation in root cells. The ameliorating effect of SA was confirmed by the histochemical staining for the detection of loss of membrane integrity in Hg-treated roots. We show that treatment with 0.2 mM SA increased the activity of NADH oxidase, ascorbate peroxidase (APX) and peroxidase (POD) in the roots exposed Hg. However, a slightly decreased superoxide dismutase (SOD) activity was observed in SA + Hg-treated roots when compared to those of Hg treatment alone. We also measured accumulation of ascorbate (ASC), glutathione (GSH) and proline in the roots of alfalfa and found that roots treated with SA in the presence of Hg accumulated more ASC, GSH and proline than those treated with Hg only. These results suggest that exogenous SA may improve the tolerance of the plant to the Hg toxicity.  相似文献   

3.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

4.
5.
The evaluation of thiol metabolism in plant adaptation to relevant levels of cadmium stress is important for understanding the real importance of phytochelatins and related thiols in stress coping. The present work was designed to study the process of stress adaptation in roots of Pisum sativum L. plants during an exposure to different cadmium concentrations, ranging from more realistic exposures to those usually employed in PC studies. The balance between individual PCs and their homologous hPCs in constitutive thiol pools and root growth was also accessed. Roots of intact plants were submitted to 1, 3, 30, 60 or 120 μM Cd and harvested after 1, 3, 6 and 9 days after exposure. Growth parameters and root tissue cadmium accumulation were analysed. High-performance liquid chromatography (HPLC) with fluorescence detection was used due to its high sensitivity. Root growth was only affected in concentrations higher than 30 μM Cd, but the presence of low cadmium concentrations induced significant alterations in constitutive thiols and triggered the synthesis of PCs and hPCs, bearing two to four olygomeric repeats. Increasing Cd stress levels were generally associated with higher polythiol production; however, with the time-course of the experiments, higher degrees of toxicity were associated with a reduction in thiol production. This behaviour was attributed to the Cys and GSH depletion, which limited polythiol synthesis, as well as root growth. In tolerable concentrations, the rate of root length recovery matched the increase in PC and hPC synthesis. In higher concentrations (60 and 120 μM), the reduction in non-protein polythiol synthesis was associated with higher Cd toxicity, leading to a severe growth reduction. The synthesis of hPCs seemed to have a reduced importance in tolerance; however, their production was stimulated when the GSH deficit was higher. Our results suggest that the reductions in PC levels, observed in higher degrees of stress, were not related to the activation of other tolerance mechanisms but were instead associated with the high metabolic cost of this thiol-based tolerance mechanism.  相似文献   

6.
7.
The aim of this study was to evaluate the health benefits associated with apple consumption following cadmium exposure. A total of 15 Wistar rats were distributed into three groups (n = 5), as follows: control group (non-treated group, CTRL); cadmium group (Cd) and apple juice group (Cd + AJ). The results showed a decrease in the frequency micronucleated cells in bone marrow and hepatocytes in the group exposed to cadmium and treated with apple juice. Apple juice was also able to reduce the 8OHdG levels and to decrease genetic damage in liver and peripheral blood cells. Catalase (CAT) was decreased following apple juice intake. Taken together, our results demonstrate that apple juice seems to be able to prevent genotoxicity and oxidative stress induced by cadmium exposure in multiple organs of Wistar rats.  相似文献   

8.
Brassica napus plants were subjected to an oxidative stress by incubating them with 100 μM CuSO4 for different times. The early response to copper stress was evaluated studying changes at both root and leaf level in the putative lipid and antioxidative signals diacylglicerol (DAG), phosphatidic acid (PA) and glutathione, in order to achieve elucidation on how these two kind of signals are related to each other. Activation of phospholipases C (PLC) and D (PLD) was studied in roots and leaves whereas increases in the levels of total and reduced glutathione (GSH) and changes in its redox status were evaluated in roots, leaves and chloroplast stroma. PLC and PLD were measured by studying the production of DAG, PA and phosphatidylbutanol (PtdButOH). PA, PtdButOH as well as DAG increased in roots already after 1 min of the treatment whereas in leaves, where no translocation of the metal occurred, any increase in PA and DAG was observed and no PtdButOH was formed. Roots were affected by oxidative stress showing decreases in glutathione reductase (GR), in total glutathione (GSH + GSSG) and GSH, and increases in oxidised glutathione (GSSG). In leaves, GR was induced during the whole stress period and both GSH + GSSG and GSH showed a peak at 5 min of the treatment. In the stroma, the maximum presence in GSH + GSSG and GSH occurred with a time shift of 25 min compared with total leaf extract.  相似文献   

9.
In the present study, the level of thiols and activity of related enzymes were investigated in coontail (Ceratophyllum demersum L.) plants to analyze their role in combating the stress caused upon exposure to cadmium (Cd; 0–10 μM) for a duration up to 7 d. Plants showed the maximum accumulation of 1293 μg Cd g?1 dw after 7 d at 10 μM. Significant increases in the level of total non-protein thiols (NP-SH) including phytochelatins (PCs) as well as upstream metabolites of the PC biosynthetic pathway, cysteine and glutathione (GSH) were observed. In addition, significant increases in the activities of cysteine synthase (CS), glutathione-S-transferase (GST), glutathione reductase (GR), as well as in vitro activation of phytochelatin synthase (PCS), were noticed in response to Cd. In conclusion, under Cd stress, plants adapted to a new metabolic equilibrium of thiols through coordinated synthesis and consumption to combat Cd toxicity and to accumulate it.  相似文献   

10.
Dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) is one of the most potent and widespread environmental pollutants. Although PCB126-induced toxicity is related to the aryl hydrocarbon receptor pathway, there is still no study that has constructed an in vivo visual model to clarify the role of the Nrf2/ARE signaling pathway in the oxidative stress mechanism of PCB126-induced toxicity. In the present study, an in vivo zebrafish model of nrf2a fused to enhanced green fluorescent protein (nrf2a-eGFP) was constructed. The zebrafish embryos microinjected with nrf2a-eGFP (72 h postfertilization) were exposed to various concentrations of PCB126 (0, 25, 50, 100, 200 μg/L) or 30 mM N-acetylcysteine (NAC)+200 μg/L PCB126. After 72 h exposure, PCB126 significantly increased the malformation rates and induced eGFP expression in a dose-dependent manner in several zebrafish tissue types. The distribution of eGFP fluorescence coincided with developmental deformity sites. NAC pretreatment effectively counteracted PCB126-induced developmental toxicity including heart rate, pericardial edema, and body length. The highest PCB126 dose, 200 μg/L, produced marked apoptosis in the eye, gill, and trunk detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. At 48 and 72 h exposure, 200 μg/L PCB126 affected glutathione metabolism as evidenced by decreased glutathione and increased glutathione disulfide concentrations, indicative of oxidative stress. These effects were also counteracted by NAC pretreatment. Furthermore, the Nrf2-regulated genes gclc, gpx, gstp1, and hmox1 were significantly induced at 24, 48, and 72 h at the highest PCB126 exposures but not in the NAC-pretreated group. In addition, a significant increase in ROS generation was detected in zebrafish larvae at 72 h PCB126 exposure, which might offer a link for future mechanistic studies. Collectively, these data suggest that PCB126-induced developmental toxicity and apoptosis in the nrf2a-eGFP-injected zebrafish model are due to oxidative stress mediated by disruption to glutathione metabolism and changes in Nrf2-regulated gene expression.  相似文献   

11.
Impact of long-term salinity and subsequent oxidative stress was studied on cellular antioxidants, proline accumulation and lipid profile of Artemisia annua L. (Sweet Annie or Qinghao) which yields artemisinin (Qinghaosu), effective against cerebral malaria-causing strains of Plasmodium falciparum. Under salinity (0.0–160 mM NaCl), in A. annua, proline accumulation, contents of ascorbate and glutathione and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) increased, but the contents of reduced forms of glutathione (GSH) and ascorbate declined. The fatty-acid profiling revealed a major salinity-induced shift towards long-chain and mono-saturated fatty acids. Myristic acid (14:0), palmitoleic acid (16:1), linoleic acid (18:2) and erucic acid (22:1) increased by 141%, 186%, 34% and 908%, respectively, in comparison with the control. Contents of oleic acid (18:1), linolenic acid (18:3), arachidonic acid (22:0) and lignoceric acid (24:0) decreased by 50%, 17%, 44% and 78%, respectively. Thus, in A. annua, salinity declines ascorbate and GSH contents. However, increased levels of proline and total glutathione (GSH + GSSG), and activities of antioxidant enzymes might provide a certain level of tolerance. Modification in fatty-acid composition might be a membrane adaptation to long-term salinity and oxidative stress.  相似文献   

12.
The effect of exposure to increasing cadmium concentrations was analyzed in rice seedlings (cv. Vialone nano). The highest Cd accumulation was found in roots, mostly in the apoplastic environment. Cd taken up in cells led to an increase in sulfhydryl groups, the appearance of phytochelatins, and formation of electron-dense vacuolar inclusions. The metal-exposure inhibited root growth and also interfered with correct root morphogenesis, causing disordered division and abnormal and forward enlargement of epidermal and cortical cell layers in the apical region. Cd accumulation in shoots was lower than in roots. In leaf cells, there was neither a substantial increase in sulfhydryl groups nor the appearance of phytochelatins. Shoot growth was reduced and, differently from in roots, leaf cell enlargement was inhibited. Chloroplasts had lowered contents of chlorophyll and a reduced number of thylakoids, but underwent structural alterations only at the highest Cd concentration tested (250 μM). Photosynthetic activity was limited due to the curtailment of CO2 availability caused by the greater resistance of Cd-exposed leaves. The damage suffered by seedlings worsened with the increase in Cd concentration, but was already evident at the lowest concentration examined (50 μM), showing that the cv. Vialone nano has a Cd-sensitivity higher than other rice cultivars.  相似文献   

13.
The aim of this study was to investigate if purple carrot extract is able to protect against the noxious activities induced by cadmium exposure in multiple organs of rats. For this purpose, histopathological analysis, genotoxicity and oxidative status were investigated in this setting. A total of twenty Wistar rats weighing 250 g on the average, and 8 weeks age were distributed into four groups (n = 5), as follows: Control group (non-treated group, CTRL); Cadmium group (Cd) and Purple carrot extract groups at 400 mg/L or 800 mg/L. Histopathological analysis revealed that liver from animals treated with purple carrot extract improved tissue degeneration induced by cadmium intoxication. Genetic damage was reduced in blood and hepatocytes as depicted by comet and micronucleus assays in animals treated with purple carrot extract. SOD-CuZn and cytocrome C gene expression increased in groups treated with purple carrot extract. Purple carrot extract also reduced the 8OHdG levels in liver cells when compared to cadmium group. Taken together, our results demonstrate that purple carrot extract is able to protect against cadmium intoxication by means of reducing tissue regeneration, genotoxicity and oxidative stress in multiple organs of Wistar rats.  相似文献   

14.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

15.
IntroductionExposure to lead and cadmium is a public health problem due to the broad exposure to these toxic substances among the general population. The objective of this study is to determine blood lead and cadmium concentrations in a working population drawn from six university hospitals in Madrid, Getafe, Cartagena, Santiago de Compostela, Santander and Palma de Mallorca (Spain) and to identify associated factors.Materials and methods951 individuals participated in the study and were administered the standardized PESA® questionnaire regarding exposure to lead and cadmium. The blood lead and cadmium concentrations were measured by electrothermal atomization atomic absorption spectrometry with Zeeman background correction in Perkin-Elmer spectrometers, guaranteeing the transferability of the results.ResultsThe median overall blood lead concentration was: 1.6 μg/dL (IQR: 0.9–2.7) and that of cadmium was: 0.21 μg/L (IQR: 0.10–0.50). There were significant differences in lead levels between men (2 μg/dL) and women (1.5 μg/dL), postmenopausal (2.6 μg/dL) and premenopausal women (1.1 μg/dL), and between participants who cooked in earthenware (2.1 μg/dL) and those who did not (1.5 μg/dL). The median of cadmium in women (0.24 μg/L) was higher than in men (0.11 μg/L) and was also higher in subjects who smoked (0.70 μg/L) than in non-smokers (0.13 μg/L).ConclusionsA reduction in blood lead and cadmium levels was observed with respect to previous studies carried out in Spain. Nevertheless, the results suggest there are certain factors which increase risk such as age, gender, menopause, age of housing, cooking in lead-glazed earthenware and exposure to cigarette smoke.  相似文献   

16.
Barley seedlings 48 h after the onset of germination on filter paper treated for 24 h by 1 mM cadmium (Cd), 3 mM nickel (Ni) or 0.5 mM mercury (Hg) showed similar approximately 45% root growth inhibition. Although root growth inhibition was similar, loss of cell viability evaluated, as Evans blue uptake was distinct among Cd, Ni and Hg treated roots. While Cd and Hg caused cell death along the whole barley root (0–8 mm), Ni induced significant loss of cell viability only in root cells 6–8 mm distance from the root tip. Our results suggest that different metabolic processes are activated in different parts of barley root in relation to distance from the root tip during heavy metal (HM) treatment. Some of them are characteristic for several HMs such as inhibition of ascorbic acid oxidase or glutathione-S-transferase stimulation, while others are specific for individual HMs, e.g. activation of acid phosphatase and lipoxygenase by Cd and Hg, or inhibition of ascorbate peroxidase by Ni and Hg treatment.  相似文献   

17.
《Plant science》2005,169(5):833-841
Roots of mountain ginseng (Panax ginseng) were exposed to various levels of oxygen (O2) (30, 40 and 50%) for 15, 30 and 45 days in 5 L (working volume 4 L) airlift bioreactors. Ginsenoside accumulation and dry weight was enhanced up to 40% O2; but thereafter declined ginsenoside and dry weight of the roots by increasing level of O2. Gradual increase in H2O2 content and lipoxygenase activity (LOX), resulting in cellular damage and oxidative stress as indicated by increased malondialdehyde (MDA) content after 30 and 45 days at all O2 levels was shown. Increased levels of O2 (above ambient) resulted in increases in non-protein thiol (NP-SH) and cysteine content. Higher activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), catalase (CAT), guaiacol peroxidase (G-POD), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S transferase (GST) activities indicated that antioxidant enzymes played an important role in protecting the roots from O2 up to 45 days, except at 50% O2 where GR, GST and GPx decreased compared to the control. However, after 45 days, SOD activity decreased significantly compared to the control in the O2-treated roots. This reflects the sensitivity of enzymes to O2 toxicity. In stress related experiment, roots showed increased synthesis of ginsenosides when 25 and 50 μM H2O2 was applied. However, higher dose and increasing treatment inhibited ginsenoside synthesis. The results indicate that plant roots could grow and protect themselves from O2 stress by coordinated induction of various antioxidant enzymes and metabolite contents. These results suggest that O2 supplementation is useful for ginsenoside accumulation using 5-L bioreactors.  相似文献   

18.
The intrinsic characteristics of white lupin regarding biomass production and tolerance to abiotic stresses could make it a good candidate to be used in degraded mine soils containing mercury (Hg), but white lupin behaviour in response to Hg has to be previously evaluated. With this aim, kinetic parameters of Hg uptake in short and long-term experiments, and Hg resistance of white lupin plants using several stress indicators were studied. The plants were grown with increasing Hg doses in nutrient solutions (0, 5 and 10 μM). Hg uptake showed an active component in Hg influx, suggesting the existence of a low affinity root transporter that can be used for Hg uptake into white lupin root cells. Km and Vmax values obtained for the saturable component were 217.7 ± 27.6 μM and 3.78 ± 0.18 μmol Hg g FW?1 h?1. Hg accumulation was concentration–time-dependent, showing a saturable behaviour for the lower doses but a linear behaviour for the highest ones. A high ability of Hg absorption by white lupin was observed both in short and long-term uptake experiments. The highest Hg dose reduced biomass production especially in the shoots. Moreover, increases in chlorophylls, malondialdehyde, total thiols and phenols were observed in Hg-stressed plants. The enhancement of total thiols and phenols levels in roots reduced oxidative stress for the 5 μM dose, but not for higher Hg levels. The deleterious effect of Hg was less marked in root tissues, in spite of their accumulation of very high Hg amounts (99%) because of, at least in part, a combined increase in total thiols and phenolics able to minimize oxidative stress. Our results suggested that phenolic content in roots could be used as a new and easy-to-use indicator of Hg presence. On the whole, white lupin showed a certain ability to survive in Hg-contaminated media and it would be possible to include it in combined decontamination strategies.  相似文献   

19.
BackgroundArsenic (As) causes oxidative stress through generation of reactive oxygen species. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a sensitive marker of oxidative DNA damage, has been associated with As exposure in some studies, but not in others, possibly due to population-specific genetic factors.ObjectivesTo evaluate the association between As and 8-oxodG in urine in a population with a low urinary monomethylated As (%MMA) and high dimethylated As (%DMA), as well as the genetic impact on (a) 8-oxodG concentrations and (b) the association between As and 8-oxodG.Materials and methodsWomen (N = 108) in the Argentinean Andes were interviewed and urine was analyzed for arsenic metabolites (ICPMS) and 8-oxodG (LC–MS/MS). Twenty-seven polymorphisms in genes related to oxidative stress and one in As(+III)methyltransferase (AS3MT) were studied.ResultsMedian concentration of 8-oxodG was 4.7 nmol/L (adjusted for specific weight; range 1.6–13, corresponding to 1.7 μg/g creatinine, range 0.57–4.8) and of total urinary As metabolites (U-As) 290 μg/L (range 94–720; 380 μg/g creatinine, range 140–1100). Concentrations of 8-oxodG were positively associated with %MMA (strongest association, p = 0.013), and weakly associated with U-As (positively) and %DMA (negatively). These associations were strengthened when taking ethnicity into account, possibly reflecting genetic differences in As metabolism and genes regulating oxidative stress and DNA maintenance. A genetic influence on 8-oxodG concentrations was seen for polymorphisms in apurinic/apyrimidinic endonuclease 1 (APEX1), DNA-methyltransferases 1 and 3b (DNMT1, DNMT3B), thioredoxin reductase 1 (TXNRD1) and 2 (TXNRD2) and glutaredoxin (GLRX).ConclusionDespite high As exposure, the concentrations of 8-oxodG in this population were low compared with other As-exposed populations studied. The strongest association was found for %MMA, stressing that some inconsistencies between As and 8-oxodG partly depend on population variations in As metabolism. We found evidence of genetic impact on 8-oxodG concentrations.  相似文献   

20.
The effects of cadmium (Cd) administration on primary root growth, mitotic activity of apical meristems, mitotic aberrations and percentage of nucleus ploidy classes of differentiated roots were examined in Pisum sativum L. cv. Frisson. Cadmium caused a reduction of root length related to concentration, with an almost complete block of growth in plants treated with 250 μM Cd, from 24 h of treatment. Root lengthening is generally related to apical meristem activity, however, in the examined pea plants, mitotic activity was suppressed by 2.5 and 25 μM Cd treatment, while the highest Cd concentration, 250 μM, caused the occurrence of mitotic figures consisting almost exclusively of prophases. The lack of relation between root lengthening and mitotic activity was explained by the meristematic activity in the first period of treatment and by a different cell elongation. Lower (0.25, 0.5 and 1 μM), non-blocking Cd concentrations induced a number of mitotic aberrations, mainly consisting of sticky metaphases and anaphase bridges, whose frequency increased with Cd concentration. Besides, Cd induced variations of the percentages of nucleus populations in the differentiated roots, increasing the percentage of 4C nuclei and decreasing that of 2C. The mechanisms involved in the nuclear response to Cd, and the possible relations between Cd alteration of meristem cell activity and nuclear ploidy of differentiated cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号