首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid contents were measured in 1- and 3-week-old primary cultures of astrocytes and in their incubation media, an amino acid-free salt solution with or without glucose, during 3-h incubation under normoxic or anoxic conditions. Most essential amino acids were rapidly released to the medium during the beginning of the incubation. A subsequent slow medium increase reflected proteolysis. Glutamate and aspartate were absent from the media during all conditions, indicating fueling of their uptake by either glycolytically or oxidatively derived energy. The total content of glutamine increased, except during incubation in glucose-deprived media, when it declined or remained constant. Changes in aspartate were negligible, suggesting oxidative degradation of aspartate-derived oxaloacetate during normoxia and its reduction to succinate during anoxia, driving regeneration of NAD+ from NADH. An increase of alanine was reduced in glucose-free media, whereas serine showed especially large increase during isolated glucose deprivation, suggesting its production from glutamine via 3-phosphoglycerate.  相似文献   

2.
氯化镉胁迫下葡萄根、叶内源一氧化氮和活性氧的生成   总被引:1,自引:0,他引:1  
以‘泽香’葡萄扦插苗为试材,在水培条件下,研究了氯化镉(CdCl2)处理下葡萄根系和叶片内源一氧化氮(NO)、活性氧(ROS)的生成规律,以及根系丙二醛(MDA)含量与根系活力的变化.结果表明:在0~1 mmol.L-1范围内,随着CdCl2处理浓度的增加,葡萄扦插苗根系和叶片NO含量、一氧化氮合酶(NOS)活性和根系活力先升高后下降;CdCl2浓度为0.01mmol.L-1时,根系NO含量和NOS活性分别提高51%和63%,超过0.1 mmol.L-1时则显著下降;CdCl2浓度为0.01和0.05 mmol.L-1时,叶片NO含量和NOS活性显著提高.0.5和1.0 mmol.L-1的CdCl2处理显著提高了根系O2.-产生速率、H2O2含量和MDA含量;同浓度CdCl2处理下,叶片中O2.-产生速率明显低于根系O2.-,而H2O2含量明显高于根系.  相似文献   

3.
4.
Research on NO in plants has achieved huge attention in recent years mainly due to its function in plant growth and development under biotic and abiotic stresses. In the present study, we investigated Cd induced NO generation and its relationship to ROS and antioxidant regulation in Brassica juncea. Cd accumulated rapidly in roots and caused oxidative stress as indicated by increased level of lipid peroxidation and H2O2 thus, inhibiting the overall plant growth. It significantly decreased the root length, leaf water content and photosynthetic pigments. A rapid induction in intracellular NO was observed at initial exposures and low concentrations of Cd. A 2.74-fold increase in intracellular NO was recorded in roots treated with 25 μM Cd than control. NO effects on Malondialdehyde (MDA) content and on antioxidant system was investigated by using sodium nitroprusside (SNP), a NO donor and a scavenger, [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] (cPTIO). Roots pretreated with 5 mM SNP for 6 h when exposed to 25 μM Cd for 24 h reduced the level of proline, non-protein thiols, SOD, APX and CAT in comparison to only Cd treatments. However, this effect was almost blocked by 100 μM cPTIO pretreatment to roots for 1 h. This ameliorating effect of NO was specific because cPTIO completely reversed the effect in the presence of Cd. Thus, the present study report that NO strongly counteracts Cd induced ROS mediated cytotoxicity in B. juncea by controlling antioxidant metabolism as the related studies are not well reported in this species.  相似文献   

5.
镉胁迫下紫花苜蓿幼苗内源一氧化氮和活性氧的生成   总被引:1,自引:0,他引:1  
以"甘农三号"紫花苜蓿幼苗为材料,在水培条件下,研究了不同浓度镉(Cd)胁迫下紫花苜蓿根、茎和叶内源一氧化氮(NO)和活性氧(ROS)的生成机制以及根系活力的变化.结果表明:在0~2.0 mmol·L-1范围内,随着Cd浓度的增加,幼苗内NO含量呈现先升高后降低的趋势,最后可维持在略高或持平于对照的水平.幼苗内一氧化氮合成酶(NOS)活性、硝酸还原酶(NR)活性、亚硝酸根离子(NO2-)含量和类胡萝卜素(Car)含量的变化与NO含量变化规律相似却又不全相同.NOS和NR是影响幼苗茎中NO含量的主要因素,NOS、NO2-和NR则是影响叶中NO含量的主要因素,而根中NO含量主要与NOS活性和NO2-含量有较大相关性.随着Cd浓度的增加,幼苗内过氧化氢(H2 O2)含量、丙二醛(MDA)含量、超氧阴离子(O-2·)含量和相对电导率(REC)呈现显著升高趋势,说明高浓度的Cd处理会使ROS大量积累,细胞膜遭破坏,细胞质外流,进而引发膜脂过氧化.随着Cd浓度的增加,紫花苜蓿根系活力的变化为先升高后降低,指示了低浓度Cd处理会促进植物代谢,增强其生命力;而高浓度Cd会致使植株代谢受抑制,细胞受损害.NO和ROS的相关性不大,说明二者虽同为自由基,但它们产生和变化方式大有差别.  相似文献   

6.
Corynebacterium glutamicum was genetically engineered to produce l-alanine from sugar under oxygen deprivation. The genes associated with production of organic acids in C. glutamicum were inactivated and the alanine dehydrogenase gene (alaD) from Lysinibacillus sphaericus was overexpressed to direct carbon flux from organic acids to alanine. Although the alaD-expressing strain produced alanine from glucose under oxygen deprivation, its productivity was relatively low due to retarded glucose consumption. Homologous overexpression of the gapA gene encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the alaD-expressing strain stimulated glucose consumption and consequently improved alanine productivity. In contrast gapA overexpression did not affect glucose consumption under aerobic conditions, indicating that oxygen deprivation engendered inefficient regeneration of NAD+ resulting in impaired GAPDH activity and reduced glucose consumption in the alanine-producing strains. Inactivation of the alanine racemase gene allowed production of l-alanine with optical purity greater than 99.5%. The resulting strain produced 98 g l−1 of l-alanine after 32 h in mineral salts medium. Our results show promise for amino acid production under oxygen deprivation.  相似文献   

7.
Suspensions enriched in isolated rabbit proximal tubules were subjected to varying degrees of oxygen deprivation-induced injury by incubating them under hypoxic conditions at pH 7.4 or pH 6.6 or under high density pelleted conditions and adenine nucleotide degradation was characterized. The major metabolite was hypoxanthine. Its levels increased with the extent of irreversible injury. It was not further degraded or salvaged. Recovery of cell ATP during reoxygenation was predominantly from the remaining cell nucleotides. Allopurinol did not alter the pattern of purine metabolism or the extent of cell injury. These observations provide information on the intrinsic purine metabolic capacity of renal tubule cells during oxygen deprivation which is relevant to understanding both the salvage mechanisms available in these cells as well as the contribution of purine metabolism to the pathogenesis of oxygen deprivation-induced tubule cell injury.  相似文献   

8.
9.
Wild-type Corynebacterium glutamicum produced 0.6 g l−1 xylitol from xylose at a productivity of 0.01 g l−1 h−1 under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l−1 xylitol at 3.1 g l−1 h−1. To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTSfru) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l−1 xylitol at 7.9 g l−1 h−1, representing the highest bacterial xylitol productivity reported to date.  相似文献   

10.
We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.  相似文献   

11.
铅(Pb)是已知毒性最强的重金属污染源之一,一氧化氮(NO)是一种普遍存在于生物界的信使分子,广泛参与植物对Pb胁迫的应答反应调控,而三叶鬼针草(Bidens pilosa)是修复Pb污染的重要种质资源。为了进一步探明NO在植物Pb胁迫响应中的作用及机理,增强三叶鬼针草对Pb污染土壤的耐性以及更好地应用于Pb污染土壤的修复。该研究以培养60 d的三叶鬼针草幼苗为材料,用不同浓度NO供体硝普钠(SNP)预处理,测定600μmol/L硝酸铅胁迫处理第3天三叶鬼针草叶、茎和根的膜质过氧化、抗氧化酶系统和渗透调节物质含量等指标,分析外源NO对铅胁迫下三叶鬼针草活性氧代谢的影响。结果表明:300μmol/L SNP能显著降低铅胁迫下三叶鬼针草相对电导率(REC)、丙二醛(MDA)、过氧化氢(H2O2)含量以及超氧阴离子(O-2·)产生速率;能显著促进脯氨酸(Pro)、可溶性蛋白(SP)、类胡萝卜素(Car)的合成;和不同浓度SNP对三叶鬼针草叶、茎和根中抗氧化酶活性的影响较复杂,其中200μmol/L SNP能显著增强叶和茎中抗坏血酸氧化酶(APX)活性、茎中谷胱甘肽还原酶(GR)活性,300μmol/L SNP能显著增强叶中过氧化物酶(POD)活性,1000μmol/L SNP能显著增强茎和根中过氧化氢酶(CAT)活性和叶中超氧化物歧化酶(SOD)活性。综上表明,适宜浓度NO可以通过启动抗氧化系统,增加渗透调节物质含量和调节抗氧化酶活性,从而有效保护三叶鬼针草膜系统稳定性,缓解Pb胁迫伤害。因此,适宜浓度NO可以增强三叶鬼针草对Pb污染土壤的耐性,其在三叶鬼针草修复Pb污染土壤中具有较好的应用价值。  相似文献   

12.
The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time‐dependent increase in H2O2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down‐regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils.  相似文献   

13.
Under oxygen deprivation, aerobic Corynebacterium glutamicum produce organic acids from glucose at high yields in mineral medium even though their proliferation is arrested. To develop a new, high-productivity bioprocess based on these unique features, characteristics of organic acid production by C. glutamicum under oxygen deprivation were investigated. The main organic acids produced from glucose under these conditions were lactic acid and succinic acid. Addition of bicarbonate, which is a co-substrate for anaplerotic enzymes, increased the glucose consumption rate, leading to increased organic acid production rates. With increasing concentration of bicarbonate, the yield of succinic acid increased, whereas that of lactic acid decreased. There was a direct correlation between cell concentration and organic acid production rates even at elevated cell densities, and productivities of lactic acid and succinic acid were 42.9 g l−1 h−1 and 11.7 g l−1 h−1, respectively, at a cell concentration of 60 g dry cell l−1. This cell-recycling continuous reaction demonstrated that rates of organic acid production by C. glutamicum could be maintained for at least 360 h.  相似文献   

14.
15.
Seed dormancy and germination are complex physiological processes usually under hormonal control. Germination of seeds from many plants including switchgrass, are inhibited by ABA and promoted by NO or ROS. However, ABA apparently requires both ROS and NO as intermediates in its action, with ROS produced by membrane-bound NADPH-oxidases responsive to ABA. In switchgrass seeds, externally supplied hydrogen peroxide (ROS), but not NO will overcome ABA-imposed inhibition of germination. Stimulation of germination by external ROS can be partially blocked by NO-scavengers, suggesting that NO is required for seed germination in switchgrass as well as for ABA-induced inhibition of germination. Collectively, these data suggest that multiple mechanisms might be required to sense and respond to varying levels of ABA, NO and ROS in switchgrass seeds.Key Words: switchgrass, seed germination, ROS, hydrogen peroxide, ABA, nitric oxide  相似文献   

16.
Ashiru OT  Pillay M  Sturm AW 《Anaerobe》2012,18(4):471-474
Mycobacterium tuberculosis has the ability to adapt to and survive under different environmental conditions, including oxygen deprivation. To better understand the pathogenesis of M. tuberculosis, we studied the invasion of human alveolar (A549) and human bronchial (BBM) epithelial cell lines by M. tuberculosis isolates cultured under oxygen deprivation. We used isolates belonging to the Beijing and F15/LAM4/KZN families, isolates with unique DNA fingerprints and the laboratory strains H37Rv and H37Ra. We determined that: (1) M. tuberculosis bacilli grown under oxygen deprivation invade epithelial cells, (2) the invasion capacity of all 17 isolates differed, and (3) oxygen deprivation influenced the invasion capacity of these isolates. All isolates invaded the A549 more effectively than the BBM cells. Three of the F15/LAM4/KZN isolates, two of which had extensively drug resistance (XDR) profiles, were at least twice as invasive (≥33%) as the most invasive Beijing isolate (15%) (P < 0.05). We conclude that for a more comprehensive understanding of the pathogenesis of M. tuberculosis, studies should include isolates that have been cultured under oxygen deprivation.  相似文献   

17.

One of the main reasons of the annual reduction in plant production all around the world is the occurrence of abiotic stresses as a result of an unpredicted changes in environmental conditions. Abiotic stresses basically trigger numerous pathways related to oxygen free radicals’ generation resulting in a higher rate of reactive oxygen species (ROS) production. Accordingly, higher rate of oxygen free radicals than its steady state causes to oxidize various types of molecules and compartments within the plants’ cells and tissues. Oxidative stress is the result of high amount free radicals of oxygen interfering with different functions leading to undergo significant changes from molecular to phenotypic levels. In response to oxidative stress, plants deploy different enzymatic and non-enzymatic antioxidant mechanisms to detoxify extra free radicals and get back to a normal state. Applying some specific treatments have shown to significantly affect the antioxidant capacity and efficiency of the stressed cells and compartments. One of such reportedly effective treatments is the utilization of selenium (Se) element in stressed plants. Over the past years some different experiments evaluated the probable effect or efficiency of Se regarding its impact on plant under oxidative stress. Accordingly, based on the recent studies, Se has a significant role in plant responses to abiotic stresses probably due to its ability to improve the plants’ tolerance to oxidative stress. The significant influences of Se, and its related components such as nano-selenium, in plants under oxidative stress rooting from abiotic stresses, along with the new finding pertaining to its metabolism and translocation mechanisms inside the plant cells under oxidative stress condition are clearly explained in this review. However, there are still lack of a comprehensive explanation related to the precise mechanism of Se in plants under oxidative stress.

  相似文献   

18.
Nitrogen metabolism in plants under low oxygen stress   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
The current-response method was used to characterize effect of oxygen deficiency on functional state of membranes along the roots of wheat seedlings. The results show apical parts of older roots being most affected by hypoxia, while the youngest roots behaved as effectively adapted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号