首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of oral administration of CuNSN, a bis(2-benzimidazolyl)thioether (see structure 1) on gastric lesions induced in rats by acetylsalicylic acid (ASA) or ethanol. The involvement of endogenous eicosanoids and nitric oxide in protection by CuNSN was evaluated with indomethacin and NG-nitro-L-arginine (L-NNA), inhibitors of prostaglandin and NO synthesis respectively. L-arginine and its enantiomer D-arginine were also used. Pretreatment with graded doses of CuNSN inhibited ASA- and ethanol-induced mucosal injury. CuNSN increased PGE2 output in rat ex vivo gastric mucosal pieces after administration of 100 mg/kg of ASA. Pretreatment with indomethacin only partially counteracted the protective activity of CuNSN against ethanol-induced damage. L-NNA did not attenuate the protection by CuNSN, which was reduced but not prevented by indomethacin, suggesting that prostanoids contribute to the CuNSN protective effect, together with some mechanism(s) other than NO synthesis.  相似文献   

2.
—Effects of acute or chronic administration of ethanol and its withdrawl on the steady-state levels and turnover rates of certain neurotransmitters have been investigated in mice. The influence of long-term administration of ethanol on the activities of enzymes involved in the metabolism of these transmitters has also been studied. Acute administration of ethanol or acetaldehyde or chronic administration of ethanol resulted in a decrease in the cerebral contents of acetylcholine, acetylCoA and CoA. Brain levels of 5-hydroxytryptamine, norepinephrine and choline remained unchanged after acute administration of ethanol. However, chronic administration of ethanol resulted in a decrease in the norepinephrine content without significantly affecting 5-hydroxytryptamine or choline contents. Cerebral levels of γ-aminobutyric acid increased with both acute or chronic administration of ethanol. The total incorporation of [3H]choline into acetylcholine in brain was depressed upon acute administration of ethanol. After withdrawal of ethanol for one day cerebral levels of norepinephrine returned to normal; however, γ-aminobutyric acid and acetylcholine returned to normal levels at 2 and 4 days after ethanol withdrawal, respectively. Pretreatment of mice with pyrazole, an inhibitor of alcohol dehydrogenase, prevented the ethanol-induced decrease in cerebral acetylcholine levels. The activities of cerebral choline acetyltransferase and glutamic decarboxylase were decreased after 2 weeks of chronic ethanol administration. However, the activities of acetyl cholinesterase and GABA-transaminase remained unaffected after 2 weeks of ethanol treatment  相似文献   

3.
C M Aragon  K Spivak  Z Amit 《Life sciences》1985,37(22):2077-2084
This investigation seeks to present evidence for the oxidation of ethanol in the brain via the peroxidatic activity of catalase and simultaneously provide evidence for the role of central acetaldehyde (ACH) in the mediation of an ethanol-induced conditioned taste aversion (CTA). Ethanol is capable of inducing a conditioned taste aversion. Pretreatment with the catalase inhibitor, 3-amino-1,2,4-triazole (AT), shows an attenuation of this ethanol-induced CTA. Animals receiving ethanol injections showed a CTA to a novel solution paired with a drug administration, while ethanol injected animals pretreated with AT did not show a CTA to ethanol administration. This effect of AT appears to be specific to the effects of ethanol as CTA's to morphine and lithium chloride were not affected by AT pretreatment. Peripheral levels of ethanol were the same in all animals regardless of pretreatment indicating that AT had no effect on peripheral levels of ethanol. These data increase support for the notion that acetaldehyde is produced directly in the brain and that it may be the agent mediating some of the psychopharmacological properties of ethanol.  相似文献   

4.
Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures, we examined whether phospholipase A2 (PLA2) activity is involved in binge alcohol (ethanol)-induced neurodegeneration, and whether docosahexaenoic acid (DHA; 22:6n-3), a fish oil-enriched fatty acid that is anti-inflammatory in brain damage models, is neuroprotective. Assessed with propidium iodide and lactate dehydrogenase (LDH) leakage, neurodamage from ethanol (6 days 100 mM ethanol with four withdrawal periods) was prevented by the PLA2 pan-inhibitor, mepacrine. Also, ethanol-dependent neurodegeneration—particularly in the entorhinal region—was significantly ameliorated by DHA supplementation (25 μM); however, adrenic acid, a 22:4n-6 analog, was ineffective. Consistent with PLA2 activation, [3H] liberation was approximately fivefold greater in [3H]arachidonic acid-preloaded HEC slice cultures during ethanol withdrawal compared to controls, and DHA supplementation suppressed [3H] release to control levels. DHA might antagonize PLA2 activity directly or suppress upstream activators (e.g., oxidative stress); however, other DHA mechanisms could be important in subdueing ethanol-induced PLA2-dependent and independent neuroinflammatory processes.  相似文献   

5.
A single intraperitoneal administration of ethanol (3.5 g/kg) to rats induced a marked increase in lipid peroxidation and a decrease of antioxidative activity in the liver after 1 h when assessed by chemi-luminescence in liver homogenates. The pretreatment with aldehyde dehydrogenase inhibitor, disulfiram (200 mg/kg 24 hr before ethanol), caused a 10-fold elevation of the blood acetaldehyde levels, with no effect on the hepatic lipid peroxidation compared to control. Cyanamide (50 mg/kg, 2 h before the ethanol) increased approximately 100-fold the acetaldehyde levels, however, the changes in lipid peroxidation were not significantly different from that produced by ethanol alone. The present results suggest, that the metabolism of acetaldehyde and not acetaldehyde itself is responsible for the in vivo activation of lipid peroxidation during acute alcohol intoxication. Disulfiram prevents the ethanol-induced lipid peroxidation in the rat liver.  相似文献   

6.
The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C secondary to the ethanol-induced activation of phospholipase C and activation of protein kinase C. Ethanol treatment also affects the sensitivity of the phospholipase C system to control by protein kinases A and C. The data indicate that ethanol can affect the control of intracellular signal transduction processes in liver cells under physiologically relevant conditions.  相似文献   

7.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

8.
Quercetin has strong antioxidant potency. Quercetin-3′-O-sulphate (Q3′S) and quercetin-3-O-glucuronide (Q3GA) are the main circulating metabolites after consumption of quercetin-O-glucoside-rich diets by humans. However, information about how these quercetin metabolites function in vivo is limited. Hence, this study evaluated the efficacy of Q3′S and Q3GA for the protection of oxidative injury using in vitro and in vivo experiments. Peroxynitrite-mediated hepatic injury in rats was induced by administration of galactosamine/lipopolysaccharide (GalN/LPS). Twenty-four hours after GalN/LPS treatment, plasma ALT and AST levels δ increased significantly. However, pretreatment with 4G-α-D-glucopyranosyl rutin, a quercetin glycoside (30 mg/kg body weight), prevented these increases and reduced nitrotyrosine formation, indicating that consumption of quercetin glycosides prevent oxidative hepatotoxicity. Moreover, physiological levels of Q3′S and Q3GA (1 µM) effectively prevented peroxynitrite-induced nitrotyrosine formation in human serum albumin in in vitro experiments. These findings indicate peroxynitrite-induced oxidative hepatotoxicity is protected by the in vivo metabolites of quercetin, Q3′S and Q3GA.  相似文献   

9.
Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level approximately 1.5-fold. The expression of 10-formyltetrahydrofolate dehydrogenase (FDH), a potential intracellular tetrahydrofolate reservoir, was increased in both mRNA and protein levels. Overexpressing recombinant FDH in embryos alleviated the ethanol-induced oxidative stress in ethanol-exposed embryos. Further characterization of the zebrafish fdh promoter revealed that the −124/+40 promoter fragment was the minimal region required for transactivational activity. The results of site-directed mutagenesis and binding analysis revealed that Sp1 is involved in the basal level of expression of fdh but not in ethanol-induced upregulation of fdh. On the other hand, CEBPα was the protein that mediated the ethanol-induced upregulation of fdh, with an approximately 40-fold increase of fdh promoter activity when overexpressed in vitro. We concluded that upregulation of fdh involving CEBPα helps relieve embryonic oxidative stress induced by ethanol exposure.  相似文献   

10.
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

11.
《Autophagy》2013,9(11):1577-1589
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

12.
Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca2+]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome.  相似文献   

13.
The effect of oxotremorine (1 mg kg-1 i.p.) on the steady state concentration of acetylcholine (ACh) and choline (Ch) and the transformation of radioactive choline ([3H]Ch) was studied in different brain regions of the mouse following death by microwave irradiation of the head. Oxotremorine significantly increased the concentration of endogenous ACh in the cortex and hippocampus and of endogenous Ch in the cortex. Pretreatment with atropine (5 mg kg-1 i.p.) prevented the increase in ACh. The biosynthesis of radioactive ACh ([3H]ACh) was decreased in all brain regions. Atropine (5 mg kg-1) pretreatment counteracted this effect of oxotremorine (1 mg kg-1), while methylatropine (5 mg kg-1) had no effect except in the striatum. A calculation of the apparent turnover rate of ACh showed that oxotremorine (1 mg kg-1) decreased the turnover in the cortex, hippocampus, midbrain. and striatum.  相似文献   

14.
Alcohol intake is associated with numerous degenerative disorders, and the detrimental effects of alcohol may be due to its influence on plasma membrane and cellular transport systems. The aim of the present study was to compare in vitro and in vivo effects of ethanol on rabbit erythrocyte ATPase activities and correlate them with ethanol-induced oxidative stress. Age-matched male rabbits were given 5% ethanol in 2% sucrose solution, for 6 weeks ad libitum; control animals were given tap water. Daily intake of ethanol was 5 g/kg body weight; this experimental regimen resulted in an average serum ethanol concentration of 16.77 ± 2.00 mM/l. After this period, blood was collected, serum ethanol concentration was determined and erythrocyte membranes were prepared according to the method of Post et al. Activities of Na+/K+- and Mg2+-ATPases were determined. Thiobarbituric acid-reactive substance (TBARS) assay was used to detect levels of lipid peroxidation, a major indicator of oxidative stress. In vitro ethanol inhibits both Na+/K+-ATPase and Mg2+-ATPase, but Na+/K+-ATPase is more sensitive to the ethanol-induced inhibition. Increasing concentration of ethanol increased TBARS production, but significant difference was attained only at 5 and 12.5 mM of ethanol. Chronic ethanol consumption induced significant increase in Na+/K+- and Mg2+-ATPase activity, and TBARS production. Our results suggest that increased ATPase activity induced by chronic ethanol consumption is due to oxidative, induced modification of membrane phospholipids and proteins, which are responsible for inhibition of ATPase activity. Increased production of TBARS induced by in vitro exposure to ethanol is not the only factor that influences ATPases activity. Further research is needed to elucidate this relationship.  相似文献   

15.
The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p?p?p?p?p?2+, Cl?, DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.  相似文献   

16.
Cells of Zymomonas mobilis ATCC 10988 were immobilized in 1.5% calcium alginate and packed in a column bioreactor for a series of fermentations utilizing 10.0% glucose media with the addition of one of the following amino acids or keto acids: L-leucine, L-isoleucine, L-valine, α-ketoisocaproic acid, α-ketobutyric acid, or α-ketoisovaleric acid. This was done in order to study the rates of production of higher alcohols during ethanolic fermentations at varying dilution rates while under the influence of amino acids or keto acids. Results indicate that the EHRLICH mechanism is operative in Zymomonas sp. α-Ketobutyrate enhanced the production of n-propanol and act-amyl alcohol. α-Ketoisocaproic acid stimulated the production of isoamyl alcohol. α-Ketoisovaleric acid increased the levels of isobutanol. The amino acids also gave rise to their corresponding alcohols but to a far lesser degree than did the keto acids. During high glucose utilization, ethanol yields ranged from 87% to 94% of theoretical with productivity ranging from 60.08 g/l/h in one fermentation (at a dilution rate of 1.35 h?1) to 70.42 g/l/h in another (at a dilution rate of 1.58 h?1). At dilution rates of 1.58 h?1, higher alcohol productivity rose to as high as 4,313 mg/l/h in the presence of α-ketoisocaproic acid, 1,734.49 mg/l/h using α-ketoisovaleric acid, and 1,618.05 mg/l/h in α-ketobutyric acid. The concomitant production of ethanol and higher alcohols in all of the fermentations indicates that glucose is required for the production of the higher alcohols from their corresponding amino acids or keto acids.  相似文献   

17.
Abstract— Effects of the acute and chronic administration of ethanol have been investigated in mouse brain on the redox-state, citric acid cycle function, levels of adenine nucleotides and other metabolites. Cerebral oxidation of ethanol, activity of alcohol dehydrogenase and the permeability of brain and liver mitochondrial preparations after chronic ethanol administration have been also investigated. Acute or chronic administration of ethanol resulted in a small but significant increase in the reduced components of certain dehydrogenase-linked substrate pairs in brain. Pyrazole, an inhibitor of alcohol dehydrogenase, prevented the ethanol-induced changes in brain. 14CO2 production from several substrates was inhibited in brains from chronically ethanol-fed animals. Addition of pyrazole, however, prevented the ethanol-mediated inhibition of 14CO2 production. Chronic administration of ethanol resulted in decreased levels of ATP and creatine phosphate in the brain, and increased contents of ADP and AMP. The cerebral activities of alcohol dehydrogenase and succinic dehydrogenase, oxidation of ethanol, mitochondrial oxidation of a-glycerophosphate, and levels of NADH remained unaffected by the chronic administration of ethanol. In contrast to liver, where chronic administration of ethanol increased the contribution of 'substrate shuttles'resulting in increased oxidation of ethanol; in brain, the contribution of these 'shuttles'remained unaffected.  相似文献   

18.
The effects of embryonic exposure on brain phospholipid levels were studied by injecting various concentrations of ethanol into fertile chicken eggs at 0 days of development. At 18 days of development, the levels of total phospholipids and various phospholipid classes were assayed in brain tissue and correlated to neuron densities within the cerebral hemispheres and the optic lobes. Although ethanol concentrations ranging from 0 to 3700 μm/Kg egg wt. failed to influence either total brain weight or total brain phospholipid levels, ethanol-induced changes in the levels of individual phospholipid classes were observed. When injected with 7 μm of ethanol/Kg egg wt., a 2- to 3-fold increase in brain phosphatidylethanolamine (PE) levels were observed with reduced levels of brain phosphatidylcholine (PC) and brain sphingomyelin (SP). When injected with 74 μm of ethanol/Kg egg wt., ethanol-induced increases in brain phosphatidylserine (PS) and PE were observed with ethanol-induced decreases in brain PC and SP. Cell fractionation studies demonstrated ethanol-induced increases in brain PE and PS and ethanol-induced decreases in brain PC and SP in nuclear, mitochondrial, and microsomal membranes. These ethanol-induced alterations in brain phospholipid profiles correlated with ethanol-induced reductions in neuron densities within the cerebral hemispheres and optic lobes.  相似文献   

19.
A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol (ABE)) fermentation. A pretreatment temperature of 200 °C resulted in the generation of a hydrolyzate that inhibited butanol fermentation. When SSB pretreatment temperature was decreased to 190 °C (0-min holding time), the hydrolyzate was successfully fermented without inhibition and an ABE productivity of 0.51 g L?1 h?1 was achieved which is comparable to the 0.49 g L?1 h?1 observed in the control fermentation where glucose was used as a feedstock. These results are based on the use of 86 g L?1 SSB solid loadings in the pretreatment reactors. We were also able to increase SSB solid loadings from 120 to 200 g L?1 in the pretreatment step (190 °C) followed by hydrolysis and butanol fermentation. As pretreatment solid loadings increased, ABE yield remained in the range of 0.38–0.46. In these studies, a maximum ABE concentration of 16.88 g L?1 was achieved. Using the LHW pretreatment technique, 88.40–96.00 % of polymeric sugars (cellulose + hemicellulose) were released in the SSB hydrolyzate. The LHW pretreatment technique does not require chemical additions and is environmentally friendly, and the hydrolyzate can be used successfully for butanol fermentation.  相似文献   

20.
To assess the effect of chronic ethanol ingestion in the content of the reduced forms of coenzymes Q9 (ubiquinol-9) and Q10 (ubiquinol-10) as a factor contributing to oxidative stress in liver and brain, male Wistar rats were fed ad libitum a basal diet containing either 10 or 2.5 mg α-tocopherol/100 g diet (controls), or the same basal diet plus a 32% ethanol-25% sucrose solution. After three months treatment, ethanol chronically-treated rats showed identical growth rates to the isocalorically pair-fed controls, irrespectively of α-tocopherol dietary level. Lowering dietary α-tocopherol led to a decreased content of this vitamin in the liver and brain of control rats, without changes in that of ubiquinol-9, and increased levels of hepatic ubiquinol-10 and total glutathione (tGSH), accompanied by a decrease in brain tGSH. At the two levels of dietary α-tocopherol, ethanol treatment significantly decreased the content of hepatic α-tocopherol and ubiquinols 9 and 10. This effect was significantly greater at 10 mg α-tocopherol/100 g diet than at 2.5, whereas those of tGSH were significantly elevated by 43% and 9%, respectively. Chronic ethanol intake did not alter the content of brain α-tocopherol and tGSH, whereas those of ubiquinol-9 were significantly lowered by 20% and 14% in rats subjected to 10 and 2.5 mg α-tocopherol/100 g diet, respectively. It is concluded that chronic ethanol intake at two levels of dietary α-tocopherol induces a depletion of hepatic α-tocopherol and ubiquinols 9 and 10, thus contributing to ethanol-induced oxidative stress in the liver tissue. This effect of ethanol is dependent upon the dietary level of α-tocopherol, involves a compensatory enhancement in hepatic tGSH availability, and is not observed in the brain tissue, probably due to its limited capacity for ethanol biotransformation and glutathione synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号