首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The outer membrane plasminogen activator Pla of Yersinia pestis is a central virulence factor in plague. The primary structure of the Pla β-barrel is conserved in Y. pestis biovars Antiqua, Medievalis, and Orientalis, which are associated with pandemics of plague. The Pla molecule of the ancestral Y. pestis lineages Microtus and Angola carries the single amino acid change T259I located in surface loop 5 of the β-barrel. Recombinant Y. pestis KIM D34 or Escherichia coli XL1 expressing Pla T259I was impaired in fibrinolysis and in plasminogen activation. Lack of detectable generation of the catalytic light chain of plasmin and inactivation of plasmin enzymatic activity by the Pla T259I construct indicated that Microtus Pla cleaved the plasminogen molecule more unspecifically than did common Pla. The isoform pattern of the Pla T259I molecule was different from that of the common Pla molecule. Microtus Pla was more efficient than wild-type Pla in α2-antiplasmin inactivation. Pla of Y. pestis and PgtE of Salmonella enterica have evolved from the same omptin ancestor, and their comparison showed that PgtE was poor in plasminogen activation but exhibited efficient antiprotease inactivation. The substitution 259IIDKT/TIDKN in PgtE, constructed to mimic the L5 region in Pla, altered proteolysis in favor of plasmin formation, whereas the reverse substitution 259TIDKN/IIDKT in Pla altered proteolysis in favor of α2-antiplasmin inactivation. The results suggest that Microtus Pla represents an ancestral form of Pla that has evolved into a more efficient plasminogen activator in the pandemic Y. pestis lineages.Since the year 540, plague has killed some 200 million humans in three pandemics, i.e., the Justinian plague, the Black Death, and the modern plague (36). Genomic studies have estimated that the etiological agent, Yersinia pestis, evolved from the oral-fecal pathogen Yersinia pseudotuberculosis serotype O1b only shortly before the first pandemic, i.e., 5,000 to 20,000 years ago (1, 2, 46), which has made the bacterium a paradigm of the rapid evolution of a severe bacterial pathogen (57). At least four biovars of Y. pestis have been identified through metabolic and genomic studies; of these biovars, Antiqua, Medievalis, and Orientalis may be associated with the three plague pandemics, whereas the fourth biovar, Microtus, is associated with human-attenuated Y. pestis strains from two geographically distant infection foci in China (36, 59-61). A recent molecular analysis indicated that the biovars are not monophyletic and proposed the subdivision of Y. pestis into eight molecular groupings, which represent different evolutionary branches and histories and are only partially compatible with the biovars (1). Y. pestis evolved from Y. pseudotuberculosis along branch 0, which consists of “atypical” Y. pestis strains designated Angola, Microtus, and Pestoides; these are phylogenetically ancestral to the Antiqua, Medievalis, and Orientalis branches (1).As a disease, plague exhibits various pathologies. Bubonic plague is the zoonotic form of the disease, which is usually acquired by humans from the bite of a flea that has been infected through a blood meal on a diseased rodent (36). The bacteria invade at the intradermal flea bite site and migrate to lymphatic vessels and then to regional draining lymph nodes, where they multiply and cause the development of buboes (44). Without early treatment, bubonic plague progresses to life-threatening septicemic plague, and hematogenous spread of the bacterium to lungs leads to pneumonic plague, a rapidly fatal and highly contagious airborne disease. Occasional injection of Y. pestis cells by the flea directly into the circulatory system leads to primary septicemic plague (43).The plasminogen activator Pla is a cell surface protease encoded by the Y. pestis-specific plasmid pPCP1 (10, 48). Pla is essential in the pathogenesis of bubonic (43, 49) and pneumonic plague (28), whereas it has less of a role in primary septicemic plague (43, 49). The pla gene is highly transcribed in buboes of Y. pestis-infected mice (45), and Pla specifically potentiates migration of the bacteria to lymphatic tissue (43). Pla seems to have a different role in pneumonic plague, where it allows Y. pestis to replicate rapidly in the lungs, causing lethal fulminant pneumonia (28). Virulent Y. pestis strains lacking the Pla-encoding plasmid pPCP1 have been isolated in Asia (3), and they can be associated with primary septicemic plague (43).Pla is an aspartic protease (22, 55) that activates human plasminogen (Plg) to the serine protease plasmin (47) and inactivates the plasmin inhibitor α2-antiplasmin (α2AP), thus affecting the main control system for plasmin activity (22). Plg is an abundant circulating zymogen, and its activation is central in the pathogenesis of plague (13, 28, 43), and plasmin is a powerful serine protease associated with cell migration and degradation of fibrin clots (29, 32, 37). In accordance with this, Pla-mediated bacterial adherence directs uncontrolled plasmin proteolysis onto basement membranes to enhance bacterial metastasis through tissue barriers (25, 27), and fibrinolysis by Pla-generated plasmin activity plays a role in the pathogenesis of bubonic plague (8).Compared to those of other Y. pestis biovars, Microtus isolates have several unique genomic features that may be involved in their inherent inability to attack the human host, and specific losses of genes or gene functions are thought to be responsible for the human attenuation (59). Interestingly, the attenuation does not apply to the murine host. The predicted amino acid sequence of the Pla polypeptide is remarkably conserved: in the branches Antiqua, Medievalis, and Orientalis, the Pla sequences are completely identical, whereas a single amino acid substitution, T259I, has been detected in atypical Angola and Microtus strains (6, 38, 50). A genetic analysis of 260 isolates of Y. pestis showed that the T259I substitution in Pla is shared by all isolates of biovar Microtus but absent in those of other biovars (59). Many of the Pestoides strains lack the pPCP1 plasmid and hence also the pla gene (12), and pla sequences from Pestoides are not available.Pla is a member of the omptin family of conserved outer membrane proteases/adhesins detected in several gram-negative bacterial pathogens (15, 17, 21). The omptins have the same molecular size, a β-barrel fold of 10 transmembrane β strands, and five surface-exposed loops, L1 to L5 (Fig. (Fig.1).1). The catalytic residues and the residues interacting with lipid A in the outer membrane are completely conserved (17, 21-23, 41, 55). The omptins cleave peptide substrates at basic residues (17) but show dramatic heterogeneity in the recognition of biologically important polypeptides, such as Plg, the antiprotease α2AP, gelatin, and progelatinases. Analyses of hybrid proteins created between Pla and the omptins PgtE of Salmonella enterica and OmpT of Escherichia coli have indicated that the differing polypeptide substrate selectivity of omptins is dictated by sequence variation in the mobile loop structures of the β-barrel (22, 40). Residue T259 in Pla is located at surface loop 5 and oriented inward in the active-site groove of the Pla barrel, close to residue K262, where Pla is autoprocessed (22, 23) (Fig. (Fig.11).Open in a separate windowFIG. 1.Model of Pla structure (23) and location of residue Thr259. Side (top drawing) and top (bottom drawing) views of the transmembrane β-barrel are shown. L1 to L5 are the surface loops. Catalytic residues Asp84, Asp86, Asp206, and His208 are indicated in green, Thr259 is in red, and the autoprocessing site Lys262 is in yellow. OM is the outer membrane. (C) Amino acid sequence of residues 254 to 273 at L5 and the termini of β-strands 9 and 10 in Pla, Microtus Pla, and PgtE are shown.The omptin β-barrel has spread by horizontal gene transfer in gram-negative bacteria and adapted to the life-styles of host bacteria (15, 17, 21, 22, 40). Overall, the omptins give an example of an evolvable, robust enzyme fold (34) that easily acquires novel or improved functions. The fact that the single substitution T259I associates with ancestral Y. pestis Microtus and Angola populations suggests that Microtus Pla represents a form of the protein that preceded the common Pla protein. The central role of Plg activation in the pathogenesis of plague led us to analyze whether the single substitution T259I affects the fibrinolytic activities of the Pla molecule.  相似文献   

2.
The beta-barrel outer membrane protease Pla from Yersinia pestis is an important virulence factor in plague and enables initiation of the bubonic plague. Pla is a multifunctional protease whose expression also enhances bacterial adherence to extracellular matrix. It has remained uncertain whether the increase in cellular adhesiveness results from modification of the bacterial surface by Pla, or whether the Pla molecule is an adhesin. Pla was purified as a His6-fusion protein from Escherichia coli and reconstituted with lipopolysaccharide to an enzymatically active form. Purified His6-Pla was coated onto fluorescent micro-particles (FMPs) that expressed plasminogen activity. Pla-coated FMPs also bound to laminin and to reconstituted basement membrane (Matrigel) immobilized on permanox slides, whereas only poor activity was seen with lipopolysaccharide-coated FMPs or bovine serum albumin-coated FMPs. The results show that the Pla molecule has intrinsic adhesive properties and that purified transmembrane proteins coated onto FMPs can be used for functional assays.  相似文献   

3.
Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reactive center loop. No cleavage of PAI-1 was detected with Yersinia pseudotuberculosis, an oral/fecal pathogen from which Y. pestis has evolved, or with Escherichia coli. The cleavage and inactivation of PAI-1 were mediated by the outer membrane proteases plasminogen activator Pla of Y. pestis and PgtE protease of S. enterica, which belong to the omptin family of transmembrane endopeptidases identified in Gram-negative bacteria. Cleavage of PAI-1 was also detected with the omptins Epo of Erwinia pyrifoliae and Kop of Klebsiella pneumoniae, which both belong to the same omptin subfamily as Pla and PgtE, whereas no cleavage of PAI-1 was detected with omptins of Shigella flexneri or E. coli or the Yersinia chromosomal omptins, which belong to other omptin subfamilies. The results reveal a novel serpinolytic mechanism by which enterobacterial species expressing omptins of the Pla subfamily bypass normal control of host proteolysis.Plasminogen activator inhibitor 1 (PAI-1) is a key regulator of the mammalian fibrinolytic/plasminogen system (29, 37). The fibrinolytic system comprises the serine protease zymogen plasminogen, urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), PAI-1, and plasmin inhibitor α2-antiplasmin (α2AP) (for a review, see reference 52). Plasminogen is converted to plasmin, which is a broad-spectrum serine protease that dissolves fibrin in blood clots, degrades laminin of basement membranes, and activates matrix metalloproteinases that degrade collagens and gelatins in tissue barriers. Herewith, plasmin controls physiological processes such as fibrinolysis/coagulation, cell migration and invasion, and tumor metastasis (29, 37). PAI-1 maintains normal hemostasis by inhibiting the function of the plasminogen activators tPA and uPA, which are serine proteases and highly specific for cleavage of the plasminogen molecule. tPA binds to fibrin and is associated with plasmin-mediated breakdown of fibrin clots, whereas uPA has low affinity for fibrin and associates with cell surface proteolysis, cellular migration, and damage of tissue barriers (52).The mammalian fibrinolytic and coagulation systems are targeted by invasive bacterial pathogens during infection (reviewed in references 6, 11, 34, and 61). In bacterial sepsis, increased production of fibrin clots at a damaged endothelium results from enhanced thrombin-catalyzed fibrin generation and from an increased serum level of PAI-1. Coagulation can protect the host by activating immune systems or by physically restraining the bacteria (6, 15, 25, 41). On the other hand, several invasive bacterial pathogens enhance fibrinolysis either through direct plasminogen activation or by immobilizing plasminogen/plasmin on the surface (6, 34, 61). Activation of the plasminogen system by bacteria enhances bacterial dissemination and invasiveness through release of bacteria from fibrin deposits and through degradation of tissue barriers. Bacterial plasminogen activators and receptors have been under extensive structural and functional studies, but much less is known about interactions of bacteria with the regulatory proteins of fibrinolysis.PAI-1 is present in a large variety of tissues and is secreted by several human cells (37). In healthy individuals, the level of PAI-1 antigen in human plasma is low (6 to 85 ng/ml), but synthesis and secretion of PAI-1 are strongly elevated in disease states and induced by, e.g., inflammatory cytokines and endotoxin of Gram-negative bacteria (37). PAI-1 is a serine protease inhibitor (serpin), which exists in two forms. In its active form, PAI-1 rapidly inactivates both tPA and uPA by forming a covalent bond between the hydroxyl group of a catalytic serine residue of tPA/uPA and the carboxyl group of the residue R346 at the reactive center loop (RCL) of PAI-1 (52). The RCL of PAI-1 is a 19-amino-acid-long flexible loop which inserts into the catalytic center of tPA/uPA and contains the “bait” residues R346 and M347, which mimic the normal target of tPA/uPA. PAI-1 induces distortion of the active site of tPA/uPA, which prevents completion of the catalytic cycle (70). The active form of PAI-1 is unstable, with a half-life of 2 to 3 h at 37°C, and it changes spontaneously and irreversibly into a latent form, where the RCL is incorporated into a central β-sheet of the PAI-1 molecule and therefore cannot react with tPA or uPA. This conformational change takes place also after proteolytic cleavage of PAI-1 at the R346-M347 bond. The active form of PAI-1 binds with high affinity to vitronectin (Vn), and PAI-1/Vn complex formation increases the half-life of PAI-1 2- to 4-fold (10, 46, 69). Most circulating PAI-1 is thought to be in a complex with Vn, and the complex serves as the reservoir of physiologically active PAI-1 (44).Plague disease caused by Yersinia pestis is associated with imbalance of the fibrinolytic system, and decreased fibrin(ogen) deposition has been observed in both bubonic and pneumonic plague (11, 36). The plasminogen activator Pla, which is encoded by a Y. pestis-specific 9.5-kb virulence plasmid, pPCP1 (59), does not degrade fibrin directly but mimics the action of tPA and uPA in converting plasminogen to plasmin by cleavage at R561-V562. Pla also degrades the serpin α2AP and thus creates uncontrolled plasmin activity (32, 60). Pla belongs to the omptin superfamily of bacterial β-barrel outer membrane proteases (for reviews of omptins, see references 21 and 23). The omptins share molecular size and transmembrane fold but differ markedly in their substrate selectivities. In their catalytic centers, omptins combine structural features of aspartic and serine proteases (66).Increased fibrinolysis observed in plague led us to investigate whether Y. pestis increases plasminogen activation also indirectly by controlling the activity of PAI-1. We compared Y. pestis to Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis, and the study also included omptins of other enterobacterial species.  相似文献   

4.
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.  相似文献   

5.
6.
The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding.  相似文献   

7.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

8.
Oxidation of low density lipoprotein (LDL) induced by hypochlorous acid (HOCl) leading to LDL(-), a minimally oxidized subspecies of LDL, was investigated. LDL(-) is characterized by its greater electronegativity and oxidative status, and is found in plasma in vivo. Its concentration was found to be elevated under conditions that predispose humans to atherosclerosis. We found that HOCl also converts LDL rapidly to an even more oxidized state, identified as LDL(2-), which is more electronegative than LDL(-). After milder oxidation for short durations, formation of LDL(-) takes place while less LDL(2-) is formed. Under these conditions, addition of methionine not only suppressed further oxidation of LDL but also favored the formation of LDL(-) over LDL(2-), possibly by removing chloramines at lysyl residues of LDL. The presence of lipoprotein-deficient plasma did not prevent HOCl-mediated conversion of LDL to more electronegative species. It is concluded that the HOCl-mediated conversion of LDL into more electronegative species might be physiologically relevant.  相似文献   

9.
《Cell host & microbe》2014,15(4):424-434
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

10.
Changes of ovarian tPA,uPA and PA inhibitor activities were examined in PMSG-and hCG-treatedimmature mice during periovulatory periods.The results show that 15% of the gonadotropin-treatedanimals ovulated 8 hrs after hCG administration,about 6-8 hrs earlier than in rat.It is also shownthat not only tPA activity,but also uPA activity,was regulated by gonadotropins in ovarianhomogenates and granulosa cells,and they reached maximum prior to ovulation.No measurableamount of PAI-1 activity could be detected in mouse granulosa cell conditioned medium andfollicular fluid,but considerable amount of α_2-antiplasmin,a specific inhibitor for plasmin,wasfound in follicular fluid.Cumulus-oocyte complexes contain mainly tPA.Since the ovulated eggsstill have high tPA activity,it is thought that the enzyme in the oocyte may play an important rolein implantation.  相似文献   

11.
A 44-megadalton plasmid associated with virulence and Ca2+ dependence from Yersinia enterocolitica 8081 was compared at the molecular level with a 47-megadalton plasmid associated with Ca2+ dependence from Yersinia pestis EV76. The plasmids were found to share 55% deoxyribonucleic acid sequence homology distributed over approximately 80% of the plasmid genomes. One region in which the plasmids differed was found to contain sequences concerned with essential plasmid functions. Forty-five mutants of Y. pestis were isolated which had spontaneously acquired the ability to grow on calcium-free medium (Ca2+ independence). Of these mutants, 21 were cured of their 47-megadalton plasmid, whereas the remaining had either suffered a major deletion of the plasmid or had a 2.2-kilobase insertion located in one of two adjacent BamHI restriction fragments encompassing approximately 9 kilobases. The inserted sequence was found at numerous sites on the Y. pestis chromosome and on all three plasmids in the strain and may represent a Y. pestis insertion sequence element.  相似文献   

12.
An Endothelial Storage Granule for Tissue-Type Plasminogen Activator   总被引:10,自引:0,他引:10       下载免费PDF全文
In previous studies we have shown that, after stimulation by a receptor ligand such as thrombin, tissue-type plasminogen activator (tPA) and von Willebrand factor (vWf) will be acutely released from human umbilical vein endothelial cells (HUVEC). However, the mechanisms involved in the secretion of these two proteins differ in some respects, suggesting that the two proteins may be stored in different secretory granules.

By density gradient centrifugation of rat lung homogenates, a particle was identified that contained nearly all tPA activity and antigen. This particle had an average density of 1.11–1.12 g/ml, both in Nycodenz density gradients and in sucrose density gradients. A similar density distribution of tPA was found for a rat endothelial cell line and for HUVEC. After thrombin stimulation of HUVEC to induce tPA secretion, the amount of tPA present in high-density fractions decreased, concomitant with the release of tPA into the culture medium and a shift in the density distribution of P-selectin.

vWf, known to be stored in Weibel-Palade bodies, showed an identical distribution to tPA in Nycodenz gradients. In contrast, the distribution in sucrose gradients of vWf from both rat and human lung was very different from that of tPA, suggesting that tPA and vWf were not present in the same particle.

Using double-immunofluorescence staining of HUVEC, tPA- and vWf-containing particles showed a different distribution by confocal microscopy. The distribution of tPA also differed from the distribution of tissue factor pathway inhibitor, endothelin-1, and caveolin. By immunoelectronmicroscopy, immunoreactive tPA could be demonstrated in small vesicles morphologically different from the larger Weibel-Palade bodies. It is concluded that tPA in endothelial cells is stored in a not-previously-described, small and dense (d = 1.11– 1.12 g/ml) vesicle, which is different from a Weibel-Palade body.

  相似文献   

13.
The plasminogen activator, surface protease Pla, of the plague bacterium Yersinia pestis is an important virulence factor that enables the spread of Y. pestis from subcutaneous sites into circulation. Pla-expressing Y. pestis and recombinant Escherichia coli formed active plasmin in the presence of the major human plasmin inhibitor, alpha2-antiplasmin, and the bacteria were found to inactivate alpha2-antiplasmin. In contrast, only poor plasminogen activation and no cleavage of alpha2-antiplasmin was observed with recombinant bacteria expressing the homologous gene ompT from E. coli. A beta-barrel topology model for Pla and OmpT predicted 10 transmembrane beta-strands and five surface-exposed loops L1-L5. Hybrid Pla-OmpT proteins were created by substituting each of the loops between Pla and OmpT. Analysis of the hybrid molecules suggested a critical role of L3 and L4 in the substrate specificity of Pla towards plasminogen and alpha2-antiplasmin. Substitution analysis at 25 surface-located residues showed the importance of the conserved residues H101, H208, D84, D86, D206 and S99 for the proteolytic activity of Pla-expressing recombinant E. coli. The mature alpha-Pla of 292 amino acids was processed into beta-Pla by an autoprocessing cleavage at residue K262, and residues important for the self-recognition of Pla were identified. Prevention of autoprocessing of Pla, however, had no detectable effect on plasminogen activation or cleavage of alpha2-antiplasmin. Cleavage of alpha2-antiplasmin and plasminogen activation were influenced by residue R211 in L4 as well as by unidentified residues in L3. OmpT, which is not associated with invasive bacterial disease, was converted into a Pla-like protease by deleting residues D214 and P215, by substituting residue K217 for R217 in L4 of OmpT and also by substituting the entire L3 with that from Pla. This simple modification of the surface loops and the substrate specificity of OmpT exemplifies the evolution of a housekeeping protein into a virulence factor by subtle mutations at critical protein regions. We propose that inactivation of alpha2-antiplasmin by Pla of Y. pestis promotes uncontrolled proteolysis and contributes to the invasive character of plague.  相似文献   

14.
导向性纤溶酶原激活剂的研究   总被引:5,自引:0,他引:5  
溶栓疗法是血栓治疗中的一种重要措施.研制具有高选择性的导向性纤溶酶原激活剂有着重大的理论意义和实用价值.采用血栓特异的单克隆抗体及其片段来介导溶栓剂已展示出较好的应用前景.双功能抗体以及同时具有抗栓,抗凝活性的小肽正逐渐拓宽人们有关导向分子研制的视野.所有这一切都将随着分子生物学技术的不断完善而付诸实现.  相似文献   

15.
Yersinia pestis protein Pla is a plasmid-coded outer membrane protein with aspartic-protease activity. Pla exhibits a plasminogen (Plg) activator activity (PAA) that promotes the cleavage of Plg to the active serine-protease form called plasmin. Exactly how Pla activates Plg into plasmin remains unclear. To investigate this event, we performed the interactions between the predicted Plg and Pla protein structures by rigid-body docking with the HEX program and evaluated the complex stability by molecular dynamics (MD) using the GROMACS package programs. The predicted docked complex of Plg–Pla shows the same interaction site predicted by experimental site-direct mutagenesis in other studies. After a total of 8?ns of MD simulation, we observed the relaxation of the beta-barrel structure of Pla and the progressive approximation and stabilization between the cleavage site of Plg into the extracellular loops of Pla, followed by the increase in the number of H bonds. We also report here the aminoacids that participate in the active site and the sub sites of interaction. The total understanding of these interactions can be an important tool for drug design against bacterial proteases.  相似文献   

16.
蚯蚓体内一种纤溶酶原激活剂(e-PA)的分离纯化   总被引:21,自引:4,他引:21  
为获得一种高效,低廉的溶栓药物,从赤子爱胜蚓(Eiseniafaetida)体内分离纯化出一种可体外激活纤溶酶原从而间接降解纤维蛋白的酶(e-PA).纯化过程包括:粗品的盐析,离子交换层析,凝胶过滤层析及疏水相互作用层析.该组份是由二个亚基通过疏水相互作用维系在一起的.通过凝胶过滤层析,可测得全酶的分子量为45000;SDS电泳显示大、小亚基的分子量分别是26000与18000;而质谱法测得的大、小亚基的分子量分别为24556.7与15546.6.对大小亚基进行了氨基酸组成分析,结果显示大亚基不含Lys而小亚基不含Cys.测定了大亚基N端25个氨基酸序列:VIGGTNASPGEIPWQLSQQRQSGSW.并与部分已知蛋白质序列进行了比较.e-PA在纤维蛋白平板上表现有三种不同的纤溶活性  相似文献   

17.
蚯蚓体内一种纤溶酶原激活剂(e-PA)的部分性质研究   总被引:16,自引:0,他引:16  
从赤子爱胜蚓(Eiseniafaetida)中纯化出的一种纤溶酶原激活剂(e-PA)在纤维蛋白平板上可表现出三种活性,分别记为:CFPg,uCFPg和uCF.为更好了解各种活性与e-PA的纤溶能力的关系,考察了在SDS和不同抑制剂存在下各种活性的变化.结果表明,SDS可以增强CFPg活性且使得e-PA变得对一些抑制剂更敏感;leupeptin,chymostatin,pepstatin,apro-tinin,phenylmethylsulfonylfluoride(PMSF)和dithiothreitol(DTT)对uCF没有影响;pep-statin能增强CFPg和uCFPg活性,E-64(一种巯基抑制剂)能增强uCFPg和uCF活性.这些现象说明不能简单将e-PA归结为丝氨酸蛋白酶或巯基蛋白酶.此外又以纤溶酶原为底物,分析了e-PA在体外降解天然蛋白质的肽键特异性,结果表明:e-PA可以切割碱性氨基酸,小的中性氨基酸及Met的羧基端,同时e-PA确能将纤溶酶原切割为纤溶酶;这一结论为e-PA有可能成为新型溶栓药物提供了生化基础.  相似文献   

18.
Y. pestis cells cultivated at 37 degrees C are capable of agglutinating red blood cells of some animals, which is due to the appearance of pili. The adhesion pili consist of protein subunits with a molecular weight of the order of 12000 daltons, their isoionic point being at pH 4.7. The reaction of hemagglutination was inhibited by the mixture of ganglyosides, while the preliminary treatment of red blood cells with neuraminidases increased its effectiveness. The pili are supposed to take part in the expression of virulence.  相似文献   

19.

Background

Whole genome sequencing allowed the development of a number of high resolution sequence based typing tools for Yersinia (Y.) pestis. The application of these methods on isolates from most known foci worldwide and in particular from China and the Former Soviet Union has dramatically improved our understanding of the population structure of this species. In the current view, Y. pestis including the non or moderate human pathogen Y. pestis subspecies microtus emerged from Yersinia pseudotuberculosis about 2,600 to 28,600 years ago in central Asia. The majority of central Asia natural foci have been investigated. However these investigations included only few strains from Mongolia.

Methodology/Principal Findings

Clustered Regularly Interspaced Short Prokaryotic Repeats (CRISPR) analysis and Multiple-locus variable number of tandem repeats (VNTR) analysis (MLVA) with 25 loci was performed on 100 Y. pestis strains, isolated from 37 sampling areas in Mongolia. The resulting data were compared with previously published data from more than 500 plague strains, 130 of which had also been previously genotyped by single nucleotide polymorphism (SNP) analysis. The comparison revealed six main clusters including the three microtus biovars Ulegeica, Altaica, and Xilingolensis. The largest cluster comprises 78 isolates, with unique and new genotypes seen so far in Mongolia only. Typing of selected isolates by key SNPs was used to robustly assign the corresponding clusters to previously defined SNP branches.

Conclusions/Significance

We show that Mongolia hosts the most recent microtus clade (Ulegeica). Interestingly no representatives of the ancestral Y. pestis subspecies pestis nodes previously identified in North-western China were identified in this study. This observation suggests that the subsequent evolution steps within Y. pestis pestis did not occur in Mongolia. Rather, Mongolia was most likely re-colonized by more recent clades coming back from China contemporary of the black death pandemic, or more recently in the past 600 years.  相似文献   

20.
Seven genetic variants of Yersinia pestis were detected by finger-printing of 85 strains of this bacterium from natural foci by means of a BX probe. Variants of Y. pestis strains correlate with certain species of carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号