首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants generally accumulate free proline under osmotic stress conditions. Upon removal of the osmotic stress, the proline levels return to normal. In order to understand the mechanisms involved in regulating the levels of proline, we cloned and characterized a proline dehydrogenase (PDH) cDNA from Arabidopsis thaliana (AtPDH). The 1745?bp cDNA contains a major open reading frame encoding a peptide of 499 amino acids. The deduced amino acid sequence has high homology with both Saccharomyces cerevisiae and Drosophila melanogaster proline oxidases and contains a putative mitochondrial targeting sequence. When expressed in yeast, the AtPDH cDNA complemented a yeast put1 mutation and exhibited proline oxidase activity. We also determined the free proline contents and the Δ1-pyrroline-5-carboxylate synthetase (P5CS) and PDH mRNA levels under different osmotic stress and recovery conditions. The results demonstrated that the removal of free proline during the recovery from salinity or dehydration stress involves an induction of the PDH gene while the activity of P5CS declines. The reciprocal regulation of P5CS and PDH genes appears to be a key mechanism in the control of the levels of proline during and after osmotic stress. The PDH gene was also significantly induced by exogenously applied proline. The induction of PDH by proline, however, was inhibited by salt stress.  相似文献   

2.
A cDNA for 1-pyrroline-5-carboxylate (P5C) synthetase (cOsP5CS), an enzyme involved in the biosynthesis of proline, was isolated and characterized from a cDNA library prepared from 14-day-old seedlings of Oryza sativa cv. Akibare. The deduced amino acid sequence of the P5CS protein (OsP5CS) from O. sativa exhibited 74.2% and 75.5% homology to that of the P5CS from Arabidopsis thaliana and Vigna aconitifolia, respectively. Northern blot analysis revealed that the gene for P5CS (OsP5CS) was induced by high salt, dehydration, treatment of ABA and cold treatment, while it was not induced by heat treatment. Simultaneously, accumulation of proline was observed as a result of high salt treatment in O. sativa. Moreover, the levels of expression of OsP5CS mRNA and content of proline under salt stress condition were compared between a salt-tolerant cultivar, Dee-gee-woo-gen (DGWG) and a salt-sensitive breeding line, IR28. It was observed that the expression of the P5CS gene and the accumulation of proline in DGWG steadily increased, whereas those in IR28 increased slightly.  相似文献   

3.
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes ?1-pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na+ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.  相似文献   

4.
5.
6.
This study was undertaken with the aim of investigating the effect of sucrose addition to the drinking water of rats who were fed with the same diet as a control group, on Δ9- and Δ5-desaturase activities and on the fatty acid composition of serum and liver microsomes. Weanling male Wistar rats had 30% sucrose in their drinking water for 20 weeks. An increase in total calories consumed, visceral fat accumulation, insulin, triglycerides and blood pressure and a decrease in the food intake were observed in the sucrose-fed group as compared with the control group. A decrease in linoleic and α-linolenic acid (essential fatty acids) in all serum lipid fractions of sucrose-fed rats was found. This observation correlated with a low food intake by sucrose-fed rats. The conversion of [1 14C]-palmitic to [1 14C]-palmitoleic acid by Δ9-desaturase activity was increased in sucrose-fed compared with control rats, while the conversion of [1 14C]-dihomo-γ-linolenic acids by Δ5-desaturase activity was depressed. In sucrose-fed as compared to control rats, the proportion of palmitoleic and oleic fatty acids was increased. Arachidonic acid was decreased in sucrose-fed rats. The 1,6-diphenylhexatriene fluorescence polarization of the microsomal membranes was significantly lower in the sucrose-fed group compared to the control group. These results indicate that the sucrose addition to the drinking water of the rats increased microsomal Δ9-desaturase activity and membrane disorder and decreased the activity of the Δ5-desaturase, a key enzyme in the biosynthesis of arachidonic acid, implicated in hypertension.  相似文献   

7.
《Gene》1996,172(1):149-153
A cDNA encoding Δ1-pyrroline-5-carboxylate reductase (P5CR) was isolated from the pneumocandin(Pmo)-producing fungus, Zalerion arboricola (Za), by complementation of a P5CR-deficient mutant (pro3) of Saccharomyces cerevisiae (Sc). The cloned cDNA was placed under control of the Sc galactokinase (GAL1) promoter and restored P5CR activity to the pro3 mutant. Sequence analysis revealed that the Za P5CR-encoding cDNA encodes an approx. 35 kDa protein with substantial amino acid (aa) identity to P5CR from another filamentous fungus, Neurospora crassa (Nc). Za P5CR exhibits a moderate degree of aa identity to P5CR from plants, bacteria, human and Sc. This is the first gene to be isolated from Za.  相似文献   

8.
Proline (Pro) accumulation under water stress was measured in safflower (Carthamus tinctorius L.) drought tolerant cv. A1 and sensitive cv. Nira. Activities of pyrroline-5-carboxylate reductase (P5C reductase) and pyrroline-5-carboxylate synthetase (P5C synthetase), two enzymes involved in the Pro biosynthetic pathway were also estimated. Water stress resulted in a reduction in the leaf dry mass and chlorophyll content along with a gradual accumulation of Pro. RT-PCR results show higher expression of Δ1-pyrroline-5-carboxylate synthetase (p5cs) gene in correlation with up-regulated Pro accumulation in cv. A1. P5C reductase was found to be the Pro synthesis rate limiting whereas P5C synthetase did not show any specific response to the drought stress in both cultivars.  相似文献   

9.
The potential value of proline accumulation during environmental stressreveals a collection of controversial statements. Some argue that prolineaccumulation is beneficial to the plant, while others suggest the oppositeto be true. It is thus still unknown whether or not a constitutive higherlevel of proline accumulation enhances plant tolerance to environmentalstress. Since proline in plants is synthesised from both glutamic acid andornithine, we generated antisense soybean plants with an L-1-pyrroline-5-carboxylate reductase (P5CR)gene, as it controls thecommon step of both pathways. The gene expression and consequentlyproline production was manipulated, with the use of an inducible heat shockpromoter (IHSP). The activation of the IHSP resulted in the inactivation ofthe P5CR gene, which resulted in decreased proline synthesis. Theantisense plants have provided us with insight into the correlation betweenproline accumulation, drought and osmotic stress. A mannitol stress at 32and 42 °C enhanced the accumulation of proline in control plants, incontrast to a significant decrease observed in the transformants. Theproline accumulation documented in this paper provides additional evidencethat the increase in proline levels during osmotic stress constitute anadaptive response by the plant. It was confirmed that there is anassociation between P5CR translation and proline accumulation, as theproline accumulation was markedly decreased by the activation of the heatinducible promoter and thus the antisense construct in transformed plants.A woodenbox screening indicated that proline plays a definite role insurvival of soybean plants under a drought stress, the transformantsfailed to survive a 6 day drought stress at 37 °C. This was in contrastwith the control plants which experienced the treatment only as a mildstress.  相似文献   

10.
《Gene》1996,179(1):33-37
Xanthomonas showed atypical regulation of catalase (Kat) and superoxide dismutase with respect to growth phase and response to various inducers. The highest levels of both enzymes were detected during early log phase of growth and declined as growth continued. This was in contrast to resistance levels to superoxides, H2O2 and organic peroxides, which reached maximum levels during stationary phase. Xanthomonas catalase was induced over six fold by superoxide generators and methyl methane sulfonate but weakly by H2O2. The regulation pattern of these enzymes could be important during plant/microbe interactions. To facilitate elucidation of Xanthomonas kat gene regulation, highly conserved regions of monofuctional Kat amino acid sequences were used to synthesize oligodeoxyribonucleotide primers for use in PCR reactions with Xanthomonas genomic DNA as templates. The Xanthomonas-specific PCR kat probe was used to isolate a functional kat from Xanthomonas campestris pv. phaseoli.  相似文献   

11.
Nishimura A  Nasuno R  Takagi H 《FEBS letters》2012,586(16):2411-2416
The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration.  相似文献   

12.
Li  Bichan  Cai  Dongbo  Hu  Shiying  Zhu  Anting  He  Zhili  Chen  Shouwen 《Applied microbiology and biotechnology》2018,102(23):10127-10137

Poly gamma glutamic acid (γ-PGA) is an anionic polyamide with numerous applications. Previous studies revealed that L-proline metabolism is implicated in a wide range of cellular processes by increasing intercellular reactive oxygen species (ROS) generation. However, the relationship between L-proline metabolism and γ-PGA synthesis has not yet been analyzed. In this study, our results confirmed that deletion of Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN in Bacillus licheniformis WX-02 increased γ-PGA yield to 13.91 g L−1, 85.22% higher than that of the wild type (7.51 g L−1). However, deletion of proline dehydrogenase gene ycgM had no effect on γ-PGA synthesis. Furthermore, a 2.92-fold higher P5C content (19.24 μmol gDCW−1) was detected in the ycgN deficient strain WXΔycgN, while the P5C levels of WXΔycgM and the double mutant strain WXΔycgMN showed no difference, compared to WX-02. Moreover, the ROS level of WXΔycgN was increased by 1.18-fold, and addition of n-acetylcysteine (antioxidant) decreased its ROS level, which further reduced γ-PGA synthesis capability of WXΔycgN. Collectively, our results demonstrated that proline catabolism played an important role in maintaining ROS homeostasis, and deletion of ycgN-enhanced P5C accumulation, which induced a transient ROS signal to promote γ-PGA synthesis in B. licheniformis.

  相似文献   

13.
Several functional and regulatory proteins play important roles in controlling plant stress tolerance. Proline (Pro) is one of the most accumulated osmolytes correlated with tolerance to stresses. Δ1-Pyrroline-5-carboxylate synthetase (P5CS) is a rate-limiting enzyme in Pro biosynthesis. In the present study, we isolated the cDNA for a P5CS gene (NtP5CS) from the halophyte Nitraria tangutorum. Phylogenetic analysis and subcellular localization analysis of NtP5CS-GFP protein in onion cells showed that NtP5CS was a new P5CS gene and was involved in Pro synthesis in N. tangutorum. Expression of the NtP5CS gene was induced by salt stress, dehydration, and high and low temperatures. Escherichia coli overexpressing AtP5CS or NtP5CS exhibited better growth in all treatments, including high salinity, high alkalinity, dehydration, osmotic, heat and cold stresses. Additionally, NtP5CS recombinant E. coli cells grew better than did AtP5CS recombinant cells in response to abiotic stresses. Our data demonstrate that the P5CS from a halophytic species functions more efficiently than its homologue from a glycophytic species in improving the stress tolerance of E. coli.  相似文献   

14.
15.
Molecular Biology Reports - The enzyme that catalyzes the last step in proline synthesis, δ1-pyrroline-5-carboxylate reductase, showed in most cases a distinct preference in vitro for NADPH as...  相似文献   

16.
Proline accumulates in environmentally stressed plant cells including those of legume roots and nodules, but how its level is regulated is poorly understood. Δ1-Pyrroline-5-carboxylate synthetase (P5CS), the committed-step enzyme of proline biosynthesis, is encoded by two duplicated genes in many plants. Here, we isolated MtP5CS3, a third gene, from Medicago truncatula, whose predicted polypeptide sequence is highly similar to those of previously isolated MtP5CS1 and MtP5CS2 except an extra amino-terminal segment. MtP5CS3 was strongly expressed under salinity and drought in shoots and nodulating roots, while MtP5CS1 was constitutive and MtP5CS2 induced by abscisic acid. Under salinity, MtP5CS3 promoter was more active than those of MtP5CS1 and MtP5CS2, as shown by GUS fusions. Translationally fused MtP5CS1-GFP was localized in the cytoplasm, whereas significant proportions of MtP5CS2-GFP and MtP5CS3-GFP were co-localized with rubisco small subunit protein-fused RFP in transformed hairy root cells. Under salinity, RNA silencing of MtP5CS1 or MtP5CS2 strongly induced MtP5CS3 expression, while that of MtP5CS3 decreased free proline content and nodule number. Consistently, Mtp5cs3, a loss-of-function mutant, accumulated much less proline, formed fewer nodules, and fixed nitrogen significantly less efficiently than the wild type under salinity. Thus, MtP5CS3 plays a critical role in regulating stress-induced proline accumulation during symbiotic nitrogen fixation.  相似文献   

17.
Arthromyces ramosus peroxidase (ARP) was successfully modified with a synthetic surfactant for one-electron oxidation reaction of a hydrophobic substrate in toluene. Although UV–visible absorption spectrum of surfactant–ARP complex in toluene showed slight red shift of Soret band compared to that in water, the complex can catalyze oxidation reaction of o-phenylenediamine (o-PDA) with hydrogen peroxide. It appeared that thermodynamic water activity in the reaction system has dominant effect on either the catalytic activity or the stability in the catalytic cycle. Steady-state kinetics under the optimal condition revealed that the specific constant (kcat/Km) of ARP complex for o-PDA was 2 orders of magnitude lower than that in aqueous media, while only 13-fold lower for hydrogen peroxide. The reduction of catalytic activity caused by altering the reaction media from water to toluene was found to be mainly due to the low specific constant of ARP complex for o-PDA rather than hydrogen peroxide.  相似文献   

18.
Superoxide dismutase (SOD) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species. We cloned cDNA encoding SOD activated with manganese (Mn–SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of Mn–SOD was 1,016 bp and had a 669 bp open reading frame encoding 222 amino acids. The deduced amino acid sequence of B. calyciflorus Mn–SOD showed 89.1, 71.3, and 62.1 % similarity with the Mn–SOD of the marine rotifer Brachionus plicatilis, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, respectively. The phylogenetic tree constructed based on the amino acid sequences of Mn–SODs from B. calyciflorus and other organisms revealed that this rotifer is closely related to nematodes. Analysis of the mRNA expression of Mn–SOD under different conditions revealed that expression was enhanced 5.6-fold (p < 0.001) at 30 °C after 2 h, however, low temperature (15 °C) promoted Mn SOD temporarily (2.5-fold, p < 0.001) and then decreased to normal level (p > 0.05). Moderate starvation promoted Mn–SOD mRNA expression (p 12 < 0.01, p 36 < 0.05), which reached a maximum value (15.3 times higher than control, p 24 < 0.01) at 24 h. SOD and CAT activities also elevated at the 12 h–starved group. These results indicate that induction of Mn–SOD expression by stressors likely plays an important role in aging of B. calyciflorus.  相似文献   

19.
We investigated the changes in the total activity of superoxide dismutase (SOD) and the role of its isoforms in hardening potato (Solanum tuberosum L., cv. Desnitsa) plants of wild type and transformed with desA gene of Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803. Hydroponically grown 8-week-old plants were exposed for six days to hardening temperature of 5°C. Before chilling, the total SOD activity in the transformed plants was somewhat greater than in the control plants. By the first day of hardening, SOD activity in both potato genotypes rose almost 1.5 times; however, the absolute value of SOD activity was considerably greater in the transformed plants. Subsequently, the total SOD activity in both genotypes decreased and by the end of the 6th day, it almost returned to the initial level. Electrophoretic and inhibitor analyses of potato plants revealed three types of SOD with one isoform of Mn-SOD, four isoforms of Fe-SOD, and two isoforms of Cu/Zn-SOD. In both genotypes, Fe-SOD3 manifested the greatest activity before chilling and in the course of hardening. Such changes in SOD activity corresponded to the rate of generation of superoxide anion radical and elevation of the content of products of peroxide oxidation of lipids (POL). Our data suggest that in the course of hardening of cold-resistant potato plants, the total SOD activity changed mostly due to Fe-SOD3 and to some extent as a result of elevated Cu/Zn-SOD2 activity, which was particularly evident at the beginning of hardening and more pronounced in the transformed plants. We assume that such temporal pattern is related to a greater rate of superoxide anion generation in the transformed plants as compared with control plants.  相似文献   

20.
Molecular Biology Reports - Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号