首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Accumulation of soluble sugars (sucrose, fructose, and glucose), proline, phenols (total phenols and flavonoids), and antocyanins during adaptation to low-temperature stress (4°C) of two lines of spring rape (Brassica napus L., cv. Westar) characterized by weak (Bn-1) and strong (Bn-3) expression of the Osmyb4 transgene was studied. Vegetatively propagated transgenic and wild-type plants were grown in the hydroponic culture at 24°C; at the stage of 5–6 leaves, plants were exposed to 4°C for 5 days and then returned to the optimum temperature of 24°C for recovery. Transgenic plants were established to manifest improved cold and frost tolerance, which was evident from more active biomass accumulation at 4°C as compared with wild-type plants and from sustaining their viability after 2-day-long exposure to −6°C. Determination of MDA content showed that one of the reasons of their improved cold tolerance was their capability of maintaining oxidative homeostasis under low-temperature stress. This suggestion is supported by intense accumulation of phenols and antocyanins, manifesting pronounced antioxidant effects, by transgenic plants during their cold adaptation. Thus, during 2–5 days of plant exposure to 4°C, in transgenic plants the total content of phenols increased by 2.6–3.7 times, flavonoids — by 3.7–4.7 times, and antocyanins — by 3.5–5.3 times as compared with control plants growing at 24°C. Transgenic Bn-3 plants with strong expression of the Osmyb4 gene accumulated phenols and antocyanins at 4°C more actively than Bn-1 plants characterized by weak expression of this gene. Transgenic rape plants subjected to cold stress accumulated more proline, manifesting stress-protection effects, and lesser accumulation of soluble sugars. Before the beginning of experiment, the content of soluble sugars was approximately similar in wild-type plants and transgenic lines; at 4°C their level in transgenic plants was substantially lower than in control plants. As distinct from the process of cold adaptation, during recovery, the content of all tested stress-protection compounds dropped sharply. The results obtained indicate that active expression of the Osmyb4 gene from rice in the rape plants was accompanied not only by accumulation of compatible osmolytes but also by biosynthesis of antioxidants of phenolic nature.  相似文献   

5.
ZFP245 is a cold- and drought-responsive gene that encodes a zinc finger protein in rice. The ZFP245 protein localizes in the nucleus and exhibits trans-activation activity. Transgenic rice plants overexpressing ZFP245 were generated and found to display high tolerance to cold and drought stresses. The transgenic plants did not exhibit growth retardation, but showed growth sensitivity against exogenous abscisic acid, increased free proline levels and elevated expression of rice pyrroline-5-carboxylatesynthetase and proline transporter genes under stress conditions. Overproduction of ZFP245 enhanced the activities of reactive oxygen species-scavenging enzymes under stress conditions and increased the tolerance of rice seedlings to oxidative stress. Our data suggest that ZFP245 may contribute to the tolerance of rice plants to cold and drought stresses by regulating proline levels and reactive oxygen species-scavenging activities, and therefore may be useful for developing transgenic crops with enhanced tolerance to abiotic stress.  相似文献   

6.
The expression of the gene Osmyb4, detected at low level in rice (Oryza sativa) coleoptiles grown for 3 days at 29 degrees C, is strongly induced by treatments at 4 degrees C. At sublethal temperatures of 10 and 15 degrees C, its expression in rice seedlings is already evident, but this effect cannot be vicariated by other stresses or ABA treatment. We demonstrate by transient expression that Myb4 transactivates the PAL2, ScD9 SAD and COR15a cold-inducible promoters. The Osmyb4 function in vivo is demonstrated overexpressing its cDNA in Arabidopsis thaliana plants (ecotype Wassilewskija) under the control of the constitutive CaMV 35S promoter. Myb4 overexpressing plants show a significant increased cold and freezing tolerance, measured as membrane or Photosystem II (PSII) stability and as whole plant tolerance. Finally, in Osmyb4 transgenic plants, the expression of genes participating in different cold-induced pathways is affected, suggesting that Myb4 represents a master switch in cold tolerance.  相似文献   

7.
Antioxidant enzymes play a significant role in eliminating toxic levels of reactive oxygen species (ROS), generated during stress from living cells. In the present study, two different antioxidant enzymes namely copper-zinc superoxide dismutase derived from Potentilla astrisanguinea (PaSOD) and ascorbate peroxidase (RaAPX) from Rheum austral both of which are high altitude cold niche area plants of Himalaya were cloned and simultaneously over-expressed in Arabidopsis thaliana to alleviate cold stress. It was found that the transgenic plants over-expressing both the genes were more tolerant to cold stress than either of the single gene expressing transgenic plants during growth and development. In both single (PaSOD, RaAPX) and double (PaSOD + RaAPX) transgenic plants higher levels of total antioxidant enzyme activities, chlorophyll content, total soluble sugars, proline content and lower levels of ROS, ion leakage were recorded when compared to the WT during cold stress (4°C), besides increase in yield. In the present study, Confocal and SEM analysis in conjunction with qPCR data on the expression pattern of lignin biosynthetic pathway genes revealed that the cold stress tolerance of the transgenic plants might be because of the peroxide induced up-regulation of lignin by antioxidant genes mediated triggering.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Pigeonpea (Cajanus cajan L.) cold and drought regulatory protein encoding gene (CcCDR) has been introduced into yeast and tobacco for its functional validation. In yeast, expression of CcCDR imparted marked tolerance against abiotic stresses exerted by PEG and NaCl. Transgenic tobacco lines, expressing CcCDR under the control of CaMV35S and rd29A promoters, when subjected to mannitol, NaCl and cold (4 °C) stress, developed into healthy plants with profuse root system, increased biomass, root length and chlorophyll content in contrast to the weak-stunted wild-type plants. Transgenic plants also showed increased levels of proline, reducing sugars and endogenous abscisic acid (ABA) content. Exogenous ABA treatment resulted in increased hypersensitivity and decreased stomatal aperture size of transgenic plants compared to wild type. Localization studies confirmed that CcCDR could enter the nucleus as revealed by intense fluorescence, indicating its plausible interaction with various nuclear proteins. The overall results amply demonstrate the intrinsic effect of CcCDR in bestowing multiple abiotic stress tolerance at cellular and whole plant levels. Accordingly, the multipotent CcCDR seems promising as a prime candidate gene to fortify crop plants with abiotic stress tolerance.  相似文献   

15.
Agrostis stolonifera L. ‘Penn A-4’ is a common creeping bentgrass species that is widely used in urban landscaping and golf courses. To prolong the green stage of this grass, a dehydrin gene PicW isolated from Wilson’s spruce (Picea wilsonii) was transformed into plants of ‘Penn A-4’ cultivar via a straightforward stolon node infection system. A putative transgenic plant was obtained and its tolerance to low-temperature stress was evaluated. When the transgenic line was subjected to a freezing (??5 °C) treatment, it showed better viability and more robust physiology than wild type, as evidenced by higher soluble sugar and proline contents, and lower relative electrical conductivity and malondialdehyde content. The transgenic line also showed tolerance to a chilling treatment (5 °C), although its performance was not significantly different from that of wild-type plants. Overall, the research here clearly revealed the explicit role of PicW in increasing freezing tolerance of grass at the whole-plant level, and demonstrated that the straightforward stolon node transformation method could be well used to genetically modify turfgrass. The obtained transgenic line might be as genetic resource for breeding program and practiced to grow in cold temperate zones.  相似文献   

16.
In this study, we report a function of myo-inositol-O-methyltransferase (Imt1) in response to low temperature stress using transgenic Arabidopsis thaliana. Imt1 gene was constructed identical to the Imt1 gene from a halophyte Mesembryanthemum crystallinum. After cold stress, the Imt1 transgenic plants exhibited stronger growth than the wild type plants. The elevated cold tolerance of the Imt1 over-expressing plants was confirmed by the lower electrolyte leakage and accumulation of malondialdehyde, but higher proline and soluble sugar contents in transgenic than wild type plants.  相似文献   

17.
18.
Main conclusion

Transgenic rice expressing pigeonpea Cc CDR conferred high-level tolerance to different abiotic stresses. The multiple stress tolerance observed in CcCDR -transgenic lines is attributed to the modulation of ABA-dependent and-independent signalling-pathway genes.

Stable transgenic plants expressing Cajanus cajan cold and drought regulatory protein encoding gene (CcCDR), under the control of CaMV35S and rd29A promoters, have been generated in indica rice. Different transgenic lines of CcCDR, when subjected to drought, salt, and cold stresses, exhibited higher seed germination, seedling survival rates, shoot length, root length, and enhanced plant biomass when compared with the untransformed control plants. Furthermore, transgenic plants disclosed higher leaf chlorophyll content, proline, reducing sugars, SOD, and catalase activities, besides lower levels of MDA. Localization studies revealed that the CcCDR-GFP fusion protein was mainly present in the nucleus of transformed cells of rice. The CcCDR transgenics were found hypersensitive to abscisic acid (ABA) and showed reduced seed germination rates as compared to that of control plants. When the transgenic plants were exposed to drought and salt stresses at vegetative and reproductive stages, they revealed larger panicles and higher number of filled grains compared to the untransformed control plants. Under similar stress conditions, the expression levels of P5CS, bZIP, DREB, OsLEA3, and CIPK genes, involved in ABA-dependent and-independent signal transduction pathways, were found higher in the transgenic plants than the control plants. The overall results amply demonstrate that the transgenic rice expressing CcCDR bestows high-level tolerance to drought, salt, and cold stress conditions. Accordingly, the CcCDR might be deployed as a promising candidate gene for improving the multiple stress tolerance of diverse crop plants.

  相似文献   

19.
Overexpression of NHX genes has been previously shown to improve salt tolerance of transgenic plants. In this study, transgenic rice plants overexpressing AtNHX5 showed not only high salt tolerance, but also high drought tolerance. Measurements of ion levels indicated that Na+ and K+ contents were all higher in AtNHX5 overexpressing shoots than in wild type (WT) shoots in high saline conditions. After exposure to water deficiency and salt stress, the WT plants all died, while the AtNHX5 overexpressing rice plants had a higher survival rate, dry weight, leaf water content, and leaf chlorophyll contents, accumulated more proline, and had less membrane damage than the WT plants. In addition, seeds of both transgenic and WT plants germinated on 1/2 MS medium supplemented with 250 mM mannitol, but overexpression of AtNHX5 improved the shoot growth of the seedlings. Taken together, the results indicate that AtNHX5 gene could enhance the tolerance of rice plants to multiple environmental stresses by promoting the accumulation of more effective osmolytes (ions or proline) to counter the osmotic stress caused by abiotic factors.  相似文献   

20.
Low temperature stress adversely affects plant growth, development, and crop productivity. Analysis of the function of genes in the response of plants to low temperature stress is essential for understanding the mechanism of chilling and freezing tolerance. In this study, PsCor413im1, a novel cold-regulated gene isolated from Phlox subulata, was transferred to Arabidopsis to investigate its function under low temperature stress. Real-time quantitative PCR analysis revealed that PsCor413im1 expression was induced by cold and abscisic acid. Subcellular localization revealed that PsCor413im1-GFP fusion protein was localized to the periphery of the chloroplast, consistent with the localization of chloroplast inner membrane protein AtCor413im1, indicating that PsCor413im1 is a chloroplast membrane protein. Furthermore, the N-terminal of PsCor413im1 was determined to be necessary for its localization. Compared to the wild-type plants, transgenic plants showed higher germination and survival rates under cold and freezing stress. Moreover, the expression of AtCor15 in transgenic plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that the overexpression of PsCor413im1 enhances low temperature tolerance in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号