首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P2X7 receptor is a ligand-gated ion channel, which can induce the opening of large membrane pores. Here, we provide evidence that the receptor induces pore formation in astrocytes cultured from cortex, but not from the hippocampus. Furthermore, P2X7 receptor activation promptly induces p38 mitogen-activated protein kinase (MAPK) phosphorylation in cortical but not in hippocampal astrocytes. Given the role of p38 MAPK activation in pore opening, these data suggest that defective coupling of the receptor to the enzyme could occur in hippocampal cultures. The different capabilities of the receptor to open membrane pores cause relevant functional consequences. Upon pore formation, caspase-1 is activated and pro-IL1-β is cleaved and released extracellularly. The receptor stimulation does not result in interleukin-1beta secretion from hippocampal astrocytes, although the pro-cytokine is present in the cytosol of lipopolysaccharide-primed cultures. These results open the possibility that activation of P2X7 receptors differently influences the neuroinflammatory processes in distinct brain regions.  相似文献   

2.
Neuropathic pain that typically develops when peripheral nerves are damaged through surgery, bone compression in cancer, diabetes, or infection is a major factor causing impaired quality of life in millions of people worldwide. Recently, there has been a rapidly growing body of evidence indicating that spinal glia play a critical role in the pathogenesis of neuropathic pain. Accumulating findings also indicate that nucleotides play an important role in neuron-glia communication through P2 purinoceptors. Damaged neurons release or leak nucleotides including ATP and UTP to stimulate microglia through P2 purinoceptors expressing on microglia. It was shown in an animal model of neuropathic pain that microglial P2X4 and P2X7 receptors are crucial in pain signaling after peripheral nerve lesion. In this review, we describe the modification of neuropathic pain sensation through microglial P2X4 and P2X7, with the possibility of P2Y6 and P2Y12 involvement.  相似文献   

3.
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. At first, it was thought that ATP was simply involved in acute pain, since ATP is released from damaged cells and excites directly primary sensory neurons by activating their receptors. However, neither blocking P2X/Y receptors pharmacologically nor suppressing the expression of P2X/Y receptors molecularly in sensory neurons or in the spinal cord had an effect on acute physiological pain. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in pathological pain states, particularly in neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. An important advance in our understanding of the mechanisms involved in neuropathic pain has been made by a recent work demonstrating the crucial role of ATP receptors (i.e., P2X3 and P2X4 receptors). In this review, we summarize the role of ATP receptors, particularly the P2X4 receptor, in neuropathic pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of ATP receptors including P2X4 receptors may lead to new strategies for the management of neuropathic pain.  相似文献   

4.
The P2X7 purinoceptor is unique amongst the P2X receptor family in that its activation is able to stimulate the release of mature, biologically active interleukin-1β (IL-1β), as well as a variety of other proinflammatory cytokines. Coupled with the predominate localisation of this receptor to immunocytes of haemopoetic origin, this receptor is an obvious candidate to play a major and pivotal role in processes of pain and inflammation. Using genetically modified animals that lack the P2X7 receptor, several investigators have shown that these mice do indeed demonstrate a blunted inflammatory response, and fail to develop pain following both inflammatory and neuropathic insult. These animals also show altered cytokine production in response to inflammatory stimulus, which is far broader than merely modulation of IL-1β release. In this short article, we review the role of the P2X7 receptor in modulating the release of cytokines and other mediators, and discuss the findings made from P2X7 receptor-deficient animals. As well as highlighting outstanding questions regarding this intriguing receptor, we also speculate as to the potential therapeutic benefit of P2X7 receptor modulation.  相似文献   

5.
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.  相似文献   

6.
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2′,3′-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5′-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.  相似文献   

7.
8.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   

9.
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X3 and P2X2/3 receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain–relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X3 receptor in different states of pain.  相似文献   

10.
ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential.  相似文献   

11.
Rationale: Pain and depression, which tend to occur simultaneously and share some common neural circuits and neurotransmitters, are highly prevalent complication in patients with advanced cancer. Exploring the underlying mechanisms is the cornerstone to prevent the comorbidity of chronic pain and depression in cancer patients. Plasticity-related gene 1 (PRG-1) protein regulates synaptic plasticity and brain functional reorganization during neuronal development or after cerebral lesion. Purinergic P2X7 receptor has been proposed as a therapeutic target for various pain and neurological disorders like depression in rodents. In this study, we investigated the roles of PRG-1 in the hippocampus in the comorbidity of pain and depressive-like behaviors in rats with bone cancer pain (BCP).Methods: The bone cancer pain rat model was established by intra-tibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The animal pain behaviors were assessed by measuring the thermal withdrawal latency values by using radiant heat stimulation and mechanical withdrawal threshold by using electronic von Frey anesthesiometer, and depressive-like behavior was assessed by sucrose preference test and forced swim test. Alterations in the expression levels of PRG-1 and P2X7 receptor in hippocampus were separately detected by using western blot, immunofluorescence and immunohistochemistry analysis. The effects of intra-hippocampal injection of FTY720 (a PRG-1/PP2A interaction activator), PRG-1 overexpression or intra-hippocampal injection of A438079 (a selective competitive P2X7 receptor antagonist) were also observed.Results: Carcinoma intra-tibia injection caused thermal hyperalgesia, mechanical allodynia and depressive-like behaviors in rats, and also induced the deactivation of neurons and dendritic spine structural anomalies in the hippocampus. Western blot, immunofluorescence and immunohistochemistry analysis showed an increased expression of PRG-1 and P2X7 receptor in the hippocampus of BCP rats. Intra-hippocampal injection of FTY720 or A438079 attenuated both pain and depressive-like behaviors. Furthermore, overexpression of PRG-1 in hippocampus has similar analgesic efficacy to FTY720. In addition, they rescued neuron deactivation and dendritic spine anomalies.Conclusion: The results suggest that both PRG-1 and P2X7 receptor in the hippocampus play important roles in the development of pain and depressive-like behaviors in bone cancer condition in rats by dendritic spine regulation via P2X7R/PRG-1/PP2A pathway.  相似文献   

12.
A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4 -/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4 -/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4 -/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4 -/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.  相似文献   

13.
Recently, one of the P2 purinergic receptors, the P2X7 receptor, has been extensively studied in nervous system and important functions have been revealed in both astrocytes and microglia. Stimulation of the receptors induces a sustained and nondesensitized increase in intracellular Ca2+ concentration ([Ca2+]i). In astrocytes purinergic receptors primarily regulate neurotransmission by inducing gliotransmitters release whereas in microglia the receptors stimulate the processing and release of proinflammation cytokines such as interleukin-1 and are thereby involved in inflammation and neurodegeneration. Thus, P2X7 receptors are considered not only to exert physiological functions but also mediate cell death. P2X7 receptors have also been identified in various cancer cells and in neuroblastoma cells. In these cells, the P2X7 receptor-mediated sustained Ca2+ signal is important in maintaining cellular viability and growth. Accordingly, these findings not only lead to a better understanding of roles of the receptor but also prompt the development of more potent, selective and safer P2X7 selective antagonists. These emerging antagonists bring new hope in the treatment of inflammatory-induced neurodegenerative diseases as well as neuroblastoma.  相似文献   

14.
The presynaptic P2X7 receptor (P2X7R) plays an important role in the modulation of transmitter release. We recently demonstrated that, in nerve terminals of the adult rat cerebral cortex, P2X7R activation induced Ca2+-dependent vesicular glutamate release and significant Ca2+-independent glutamate efflux through the P2X7R itself. In the present study, we investigated the effect of the new selective P2X7R competitive antagonist 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A-438079) on cerebrocortical terminal intracellular calcium (intrasynaptosomal calcium concentration;[Ca2+]i signals and glutamate release, and evaluated whether P2X7R immunoreactivity was consistent with these functional tests. A-438079 inhibited functional responses. P2X7R immunoreactivity was found in about 45% of cerebrocortical terminals, including glutamatergic and non-glutamatergic terminals. This percentage was similar to that of synaptosomes showing P2X7R-mediated [Ca2+]i signals. These findings provide compelling evidence of functional presynaptic P2X7R in cortical nerve terminals.  相似文献   

15.
目的探讨二氢杨梅素(DHM)对高糖(HG)诱导的心肌细胞H9C2损伤的影响及机制。 方法细胞处理分为对照组、35 mmol/L HG组、35mmol/L HG+50 μmol/L DHM组及50 μmol/L DHM组。CCK-8法检测细胞活力,化学比色法检测丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)水平,流式细胞术检测ROS水平;荧光定量PCR法及Elisa法分别检测TNFα、IL1β、IL6 mRNA和含量,Western Blotting检测p-IκBα、IκBα蛋白及核蛋白NF-κB p65的表达水平。采用单因素方差分析进行组间比较。 结果对照组、35mmol/?L HG组、35?mmol/L HG+50?μmol/L DHM组、35?mmol/L HG+100?μmol/L DHM组的细胞活力分别是(100±0.00) ﹪、(52.23±5.69) ﹪、(74.58±6.12) ﹪和(86.04±3.76)﹪,差异具有统计学意义(F?= 40.61,P?< 0.01)。对照组、35?mmol/L HG组和35?mmol/L HG+100?μmol/L DHM组的MDA和ROS水平,SOD和CAT活性分别是(0.44±0.06)?nmol/?ml,(2.33±0.40)?nmol/?ml,(1.48±0.41)?nmol/ml、(156.0±9.00)U/ml,(325.3±10.69)U/ml,(244.0±9.54)?U/ml,(10.62± 1.59)?U/?ml,(5.18±0.34)U/ml,(7.75±0.53)U/ml,(11.31±0.98)?U/ml,(5.20±1.12)?U/?ml和(8.06±0.66)U/ml,差异具有统计学意义(F?= 30.34,29.75,14.72,P均< 0.01)。DHM预处理可明显拮抗HG对H9C2心肌细胞TNFα、IL1β和IL6 mRNA及含量的上调作用,差异存在统计学意义(P?均< 0.01)。DHM可抑制HG对H9C2心肌细胞p-IκBα/?IκBα蛋白和核蛋白NF-κB p65表达的增加作用,差异存在统计学意义(P均< 0.01)。 结论DHM可拮抗HG诱导的H9C2心肌细胞损伤,这可能与其抑制NF-κB信号通路有关。  相似文献   

16.
目的研究皮质酮对大鼠海马神经元的毒性作用及NMDA受体亚基表达的影响.方法以体外原代培养的大鼠海马神经元为研究对象,根据影响因素,即给予的不同浓度皮质酮和其它因素分为8个组:对照组、10-7mol/L皮质酮组(简称10-7组)、10-6mol/L皮质酮组(简称10-6组)、10-5mol/L皮质酮组(简称10-5组)、10-6 高糖组、10-5 高糖组、10-6mol/L MK801组和10-5mol/L MK801组,镜下观察不同浓度皮质酮作用下海马神经元形态学的变化,并采用MTT方法测量各组细胞存活率,利用免疫细胞化学结合图象分析对原代培养海马神经元NMDA受体亚基的表达进行观察.结果 10-6、10-5浓度的皮质酮对海马神经元影响较大,细胞存活率较对照组明显降低,但10-6 高糖组、 10-5mol/L 高糖组、10-6mol/L MK801及10-5mol/L MK801 4个组,分别与相同皮质酮浓度处理组比较,细胞存活率显著提高.10-6和10-5组海马神经元上NMDA受体亚基表达较对照组明显降低.10-7mol/L浓度的皮质酮对上述指标影响不大.结论过量的皮质酮对大鼠海马神经元具有损伤作用,NMDA受体参与了此过程,NMDA受体拮抗剂和高浓度葡萄糖可保护海马神经元.  相似文献   

17.
线粒体膜电位与皮质酮对原代培养海马细胞的毒性作用   总被引:2,自引:0,他引:2  
Nie W  Zhang ZY  Zhou JH 《生理学报》2001,53(6):469-472
采用MTT法和激光共聚焦显微术观察皮质酮对原代培养海马神经细胞的存活率及其线粒体膜电位的影响。结果表明,在低糖、无血清培养条件下,皮质酮可剂量依赖地降低海马神经元及神经胶质细胞的存活率,在同等剂量下以神经元损伤更为显著。给予高浓度葡萄糖(25mmol/L)可明显拮抗皮质酮对海马神经元的毒性作用。进一步研究表明,皮质酮(10^-6-10^-5mol/L)可引起海马神经元线粒体膜电位明显下降,此作用亦可被高浓度葡萄糖所对抗。结果提示,在相同处理因素条件下,皮质酮以损伤神经元为主。皮质酮可降低海马神经元的存活率及线粒体膜电位,给予高浓度葡萄糖具有明显的改善作用。线粒体膜电位的下降可能是皮质酮引起神经元损伤的机制之一。  相似文献   

18.
Novel P2X7 antagonists were developed using a purine scaffold. These compounds were potent and selective at the P2X7 receptor in human and rodent as well as efficacious in rodent pain models. Compound 15a was identified to have oral potency in several pain models in rodent similar to naproxen, gabapentin and pregabalin. Structure–activity relationship (SAR) development and results of pain models are presented.  相似文献   

19.
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however, is unlikely to involve direct PKC-mediated P2X receptor phosphorylation.  相似文献   

20.
In addition to the classic genomic effects, increasing evidence suggests that GC can generate multiple rapid effects on many tissues and cells through nongenomic pathway. In the present study, the effects of corticosterone (CORT) on the intracellular calcium concentration ([Ca2+]i) in cultured dorsal spinal cord astrocytes were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator that could monitor real-time alterations of [Ca2+]i. CORT (0.01–10 μM) caused a rapid increase in [Ca2+]i with a dose-dependent manner in cultured dorsal spinal cord astrocytes. The action of CORT on astrocytic [Ca2+]i was blocked by pertussis toxin (a blocker of G protein activation, 100 ng/ml), but was unaffected by RU38486 (glucocorticoid receptor antagonist, 10 μM). In addition, cycloheximide (protein-synthesis inhibitor, 10 μg/ml) pretreatment could not impair the CORT-evoked [Ca2+]i elevation. Furthermore, Ca2+ mobilization induced by CORT was abolished by chelerythrine chloride (protein kinase C inhibitor, 10 μM), but was not impaired by H89 (protein kinase A inhibitor, 10 μM). These observations suggest that a nongenomic pathways might be involved in the effect of CORT on [Ca2+]i in cultured dorsal spinal cord astrocytes. In addition, our results also raise a possibility that a putative pertussis toxin-sensitive mGCR (G-protein-coupled membrane-bound glucocorticoid receptor) and the downstream activation of protein kinase C may be responsible for CORT-induced Ca2+ mobilization in cultured dorsal spinal cord astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号