首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In summary, this study of sleep in adolescents on an atypical schedule of 18-hour nights showed marked but not unanticipated differences in sleep as function of prior sleep deprivation. Unanticipated was the evidence of "recovery" sleep in adolescents who not only were not sleep deprived, but who had been on a sleep "optimizing" schedule and had been awake for only 10 hours. Extended sleep beginning about 4 hours in advance of entrained sleep onset phase was not associated with a return of SWS, a finding coinciding with predictions from studies in adults. Finally, this study provides an indication that the homeostatic sleep/wake process becomes less robust or sleep responsive during adolescent development, a phenomenon that may influence the delay of sleep common in adolescents.  相似文献   

2.
3.
Muscle pain, dyskinesia, and sleep   总被引:1,自引:0,他引:1  
Muscle pain and poor sleep commonly occur together. Whether pain induces poor sleep or vice versa is difficult to know. Muscle pain is also observed in the presence of some types of dyskinesia or movement disorders. The interaction between sleep, movement disorders, and some musculoskeletal pain appears to be complex and may be influenced by various concomitant psychological and (or) biological factors.  相似文献   

4.
Sleep and Biological Rhythms - In this study, our aim was to explore the relationship between sleep quality/quantity, chronotype, pre-sleep arousal, arousability, stress, coping, neuroticism,...  相似文献   

5.
Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.  相似文献   

6.
7.
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8).We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus.In addition, compared to control, disturbances of the sleep–wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions.In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.  相似文献   

8.
《Chronobiology international》2012,29(12):1761-1771
ABSTRACT

Schedule changes associated with rotating shifts can interfere with the circadian rhythms of nurses and thereby affect their sleep duration, sleep quality, work efficiency, and work performance. The objectives of this study was to investigate differences in workday sleep fragmentation, rest-activity cycle, sleep quality, and activity level among nurses working different shifts. After filling out a basic information questionnaire and completing the Pittsburgh Sleep Quality Index (PSQI) questionnaire, participants were asked to wear an actigraph and keep sleep records for seven consecutive days. Data pertaining to wake after sleep onset (WASO), 24-hour autocorrelation coefficient (r24), and daytime activity mean was collected in order to investigate workday sleep fragmentation, rest-activity cycle, and daytime activity level. We obtained complete questionnaires and data from 191 nurses. Day- and evening-shift nurses had more regular workday rest-activity cycles than did night-shift nurses (F = 51.26, p < .001). After controlling for r24 coefficients, we determined that nurses who experienced greater workday sleep fragmentation had higher PSQI scores (β = .18, p = .008). After controlling for WASO times, we determined that nurses who had more regular rest-activity cycles on workdays had lower PSQI scores (β = – .16, p = .036). After controlling for shift type and WASO times, we determined that nurses with higher PSQI scores displayed lower activity levels (β = – .21, p = .015) and those with higher r24 coefficients displayed higher activity levels (β = .18, p = .040) on workdays. We then examined the causal path relationships. Among the shifts, only the day-shift nurses had a higher r24 (β = ?.59, p < .001) than did the night-shift nurses; WASO exerted a significant impact on PSQI scores (β = .20, p = .002); r24 had a significant and negative influence on PSQI scores (β = ?.38, p < .001), and PSQI scores significantly and negatively influenced workday activity levels (β = ?.20, p = .006). This study determined that day- and evening-shift nurses enjoyed more regular and consistent rest-activity cycles than did night-shift nurses; nurses with greater workday sleep fragmentation and/or more irregular rest-activity cycles experienced poorer sleep quality; and nurses suffering from poorer sleep quality displayed lower daytime activity levels on workdays.  相似文献   

9.
Sleep and Biological Rhythms -  相似文献   

10.
Sleep and Biological Rhythms - Fasting during Ramadan is distinct from regular voluntary or experimental fasting. This project was conducted to objectively assess the effect of Ramadan fasting on...  相似文献   

11.
Women are approximately twice as likely as men to develop posttraumatic stress disorder (PTSD) after trauma exposure. Mechanisms underlying this difference are not well understood. Although sleep is recognized to have a critical role in PTSD and physical and psychological health more generally, research into the role of sleep in PTSD sex differences has been only recent. In this article, we review both animal and human studies relevant to sex differences in sleep and PTSD with an emphasis on the roles of sex hormones. Sleep impairment including insomnia, trauma-related nightmares, and rapid-eye-movement (REM) sleep fragmentation has been observed in individuals with chronic and developing PTSD, suggesting that sleep impairment is a characteristic of PTSD and a risk factor for its development. Preliminary findings suggested sex specific patterns of sleep alterations in developing and established PTSD. Sleep maintenance impairment in the aftermath of trauma was observed in women who subsequently developed PTSD, and greater REM sleep fragmentation soon after trauma was associated with developing PTSD in both sexes. In chronic PTSD, reduced deep sleep has been found only in men, and impaired sleep initiation and maintenance with PTSD have been found in both sexes. A limited number of studies with small samples have shown that sex hormones and their fluctuations over the menstrual cycle influenced sleep as well as fear extinction, a process hypothesized to be critical to the pathogenesis of PTSD. To further elucidate the possible relationship between the sex specific patterns of PTSD-related sleep alterations and the sexually dimorphic risk for PTSD, future studies with larger samples should comprehensively examine effects of sex hormones and the menstrual cycle on sleep responses to trauma and the risk/resilience for PTSD utilizing various methodologies including fear conditioning and extinction paradigms and animal models.  相似文献   

12.
13.
14.
《Current biology : CB》2021,31(23):5370-5376.e4
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

15.
An overview is presented of the relationship between cardiovascular activity and sleep, emphasizing the interrelations between stage of sleep and cardiovascular dysfunction. Possible implications of the data are discussed, especially in relation to stress-related factors and possible treatment regimens.  相似文献   

16.
The discovery that hypocretins are involved in narcolepsy, a disorder associated with excessive daytime sleepiness, cataplexy and unusually rapid transitions to rapid-eye-movement sleep, opens a new field of investigation in the area of sleep control physiology. Hypocretin-1 and -2 (also called orexin-A and -B) are newly discovered neuropeptides processed from a common precursor, preprohypocretin. Hypocretin-containing cells are located exclusively in the lateral hypothalamus, with widespread projections to the entire neuroaxis. Two known receptors, Hcrtr1 and Hcrtr2, have been reported. The functional significance of the hypocretin system is rapidly emerging in both animals and humans. Hypocretin abnormalities cause narcolepsy in dogs, human and mice. The role of the hypocretin system in normal sleep regulation is more uncertain. We believe hypocretin cells drive cholinergic and monoaminergic activity across the sleep cycle. Input from the suprachiasmatic nucleus to hypocretin-containing neurons may explain the occurrence of clock-dependent alertness. Other functions are suggested by pharmacological and neurochemical experiments. These include regulation of food intake, neuroendocrine function, autonomic nervous system activity and energy balance.  相似文献   

17.
Sleep is understood to possess recuperative properties and, conversely, sleep loss is associated with disease and shortened life span. Despite these critical attributes, the mechanisms and functions by which sleep and sleep loss impact health still are speculative. One of the most consistent, if largely overlooked, signs of sleep loss in both humans and laboratory rats is a progressive increase in circulating phagocytic cells, mainly neutrophils. The destination, if any, of the increased circulating populations has been unknown and, therefore, its medical significance has been uncertain. The purpose of the present experiment was to determine the content and location of neutrophils in liver and lung tissue of sleep-deprived rats. These are two principal sites affected by neutrophil migration during systemic inflammatory illness. The content of neutrophils in the intestine also was determined. Sleep deprivation in rats was produced for 5 and 10 days by the Bergmann-Rechtschaffen disk method, which has been validated for its high selectivity under freely moving conditions and which was tolerated and accompanied by a deep negative energy balance. Comparison groups included basal conditions and 48 h of sleep recovery after 10 days of sleep loss. Myeloperoxidase (MPO), an enzyme constituent of neutrophils, was extracted from liver, lung, and intestinal tissues, and its activity was determined by spectrophotometry. Leukocytes were located in vasculature and interstitial spaces in the liver and the lung by immunohistochemistry. Heme oxygenase-1, also known as heat shock protein-32 and a marker of cellular stress, and corticosterone also were measured. The results indicate neutrophil migration into extravascular liver and lung tissue concurrent with cell stress and consistent with tissue injury or infection induced by sleep loss. Plasma corticosterone was unchanged. Recovery sleep was marked by increased lung heme oxygenase-1, increased intestinal MPO activity, and abnormally low corticosterone, suggesting ongoing reactive processes as a result of prior sleep deprivation.  相似文献   

18.
All animals in which sleep has been studied express signs of sleep-like behaviour, suggesting that sleep must have some fundamental functions that are sustained by natural selection. Those functions, however, are still not clear. Here, we examine the ecological relevance of sleep from the perspective of behavioural trade-offs that might affect fitness. Specifically, we highlight the advantage of using food-caching animals as a system in which a conflict might occur between engaging in sleep for memory/learning and hypothermia/torpor to conserve energy. We briefly review the evidence for the importance of sleep for memory, the importance of memory for food-caching animals and the conflicts that might occur between sleep and energy conservation in these animals. We suggest that the food-caching paradigm represents a naturalistic and experimentally practical system that provides the opportunity for a new direction in sleep research that will expand our understanding of sleep, especially within the context of ecological and evolutionary processes.  相似文献   

19.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

20.
To determine the relationships among plasma ghrelin and leptin concentrations and hypothalamic ghrelin contents, and sleep, cortical brain temperature (Tcrt), and feeding, we determined these parameters in rats in three experimental conditions: in free-feeding rats with normal diurnal rhythms, in rats with feeding restricted to the 12-h light period (RF), and in rats subjected to 5-h of sleep deprivation (SD) at the beginning of the light cycle. Plasma ghrelin and leptin displayed diurnal rhythms with the ghrelin peak preceding and the leptin peak following the major daily feeding peak in hour 1 after dark onset. RF reversed the diurnal rhythm of these hormones and the rhythm of rapid-eye-movement sleep (REMS) and significantly altered the rhythm of Tcrt. In contrast, the duration and intensity of non-REMS (NREMS) were hardly responsive to RF. SD failed to change leptin concentrations, but it promptly stimulated plasma ghrelin and induced eating. SD elicited biphasic variations in the hypothalamic ghrelin contents. SD increased plasma corticosterone, but corticosterone did not seem to influence either leptin or ghrelin. The results suggest a strong relationship between feeding and the diurnal rhythm of leptin and that feeding also fundamentally modulates the diurnal rhythm of ghrelin. The variations in hypothalamic ghrelin contents might be associated with sleep-wake activity in rats, but, unlike the previous observations in humans, obvious links could not be detected between sleep and the diurnal rhythms of plasma concentrations of either ghrelin or leptin in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号