首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mitochondrial fusion requires the coordinated fusion of the outer and inner membranes. Three large GTPases—OPA1 and the mitofusins Mfn1 and Mfn2—are essential for the fusion of mammalian mitochondria. OPA1 is mutated in dominant optic atrophy, a neurodegenerative disease of the optic nerve. In yeast, the OPA1 ortholog Mgm1 is required for inner membrane fusion in vitro; nevertheless, yeast lacking Mgm1 show neither outer nor inner membrane fusion in vivo, because of the tight coupling between these two processes. We find that outer membrane fusion can be readily visualized in OPA1-null mouse cells in vivo, but these events do not progress to inner membrane fusion. Similar defects are found in cells lacking prohibitins, which are required for proper OPA1 processing. In contrast, double Mfn-null cells show neither outer nor inner membrane fusion. Mitochondria in OPA1-null cells often contain multiple matrix compartments bounded together by a single outer membrane, consistent with uncoupling of outer versus inner membrane fusion. In addition, unlike mitofusins and yeast Mgm1, OPA1 is not required on adjacent mitochondria to mediate membrane fusion. These results indicate that mammalian mitofusins and OPA1 mediate distinct sequential fusion steps that are readily uncoupled, in contrast to the situation in yeast.  相似文献   

2.
BACKGROUND INFORMATION: Human OPA1 (optic atrophy type 1) is a dynamin-related protein of the mitochondrial IMS (intermembrane space) involved in membrane fusion and remodelling. Similarly to its yeast orthologue Mgm1p that exists in two isoforms generated by the serine protease Pcp1p/Rbd1p, OPA1 exists in various isoforms generated by alternative splicing and processing. In the present paper, we focus on protease processing of OPA1. RESULTS: We find that various mammalian cell types display a similar pattern of OPA1 isoforms [two L-OPA1 (long isoforms of OPA1) and three S-OPA1 (short isoforms of OPA1)] and that loss of the inner membrane potential, but not inhibition of oxidative phosphorylation or glycolysis, induces rapid and complete processing of L-OPA1 to S-OPA1. In isolated mitochondria, OPA1 processing was inhibited by heavy-metal chelators, pointing to processing by a mitochondrial metalloprotease. The pattern of OPA1 isoforms and its processing kinetics were normal in mitochondria devoid of the serine protease PARL (presenilins-associated rhomboid-like protein) - the human orthologue of Pcp1/Rbd1 - and in cells from patients carrying homozygous mutations in SPG7 (spastic paraplegia type 7), a gene encoding the matrix-oriented metalloprotease paraplegin. In contrast, OPA1 processing kinetics were delayed upon knock-down of YME1L (human yme1-like protein), an IMS-oriented metalloprotease. OPA1 processing was also stimulated during apoptosis, but inhibition of this processing did not affect apoptotic release of OPA1 and cytochrome c. Finally, we show that all OPA1 isoforms interact with Mfn1 (mitofusin 1) and Mfn2 and that these interactions are not affected by dissipation of DeltaPsim (inner mitochondrial membrane potential) or OPA1 processing. CONCLUSIONS: Metalloprotease-mediated processing of OPA1 is modulated by the inner membrane potential and is likely to be mediated by the YME1L protease.  相似文献   

3.
The structure of mitochondria is highly dynamic and depends on the balance of fusion and fission processes. Deletion of the mitochondrial dynamin-like protein Mgm1 in yeast leads to extensive fragmentation of mitochondria and loss of mitochondrial DNA. Mgm1 and its human ortholog OPA1, associated with optic atrophy type I in humans, were proposed to be involved in fission or fusion of mitochondria or, alternatively, in remodeling of the mitochondrial inner membrane and cristae formation (Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) J. Cell Biol. 151, 341-352; Wong, E. D., Wagner, J. A., Scott, S. V., Okreglak, V., Holewinske, T. J., Cassidy-Stone, A., and Nunnari, J. (2003) J. Cell Biol. 160, 303-311; Sesaki, H., Southard, S. M., Yaffe, M. P., and Jensen, R. E. (2003) Mol. Biol. Cell, in press). Mgm1 and its orthologs exist in two forms of different lengths. To obtain new insights into their biogenesis and function, we have characterized these isoforms. The large isoform (l-Mgm1) contains an N-terminal putative transmembrane segment that is absent in the short isoform (s-Mgm1). The large isoform is an integral inner membrane protein facing the intermembrane space. Furthermore, the conversion of l-Mgm1 into s-Mgm1 was found to be dependent on Pcp1 (Mdm37/YGR101w) a recently identified component essential for wild type mitochondrial morphology. Pcp1 is a homolog of Rhomboid, a serine protease known to be involved in intercellular signaling in Drosophila melanogaster, suggesting a function of Pcp1 in the proteolytic maturation process of Mgm1. Expression of s-Mgm1 can partially complement the Deltapcp1 phenotype. Expression of both isoforms but not of either isoform alone was able to partially complement the Deltamgm1 phenotype. Therefore, processing of l-Mgm1 by Pcp1 and the presence of both isoforms of Mgm1 appear crucial for wild type mitochondrial morphology and maintenance of mitochondrial DNA.  相似文献   

4.
Background information. Human OPA1 (optic atrophy type 1) is a dynamin‐related protein of the mitochondrial IMS (intermembrane space) involved in membrane fusion and remodelling. Similarly to its yeast orthologue Mgm1p that exists in two isoforms generated by the serine protease Pcp1p/Rbd1p, OPA1 exists in various isoforms generated by alternative splicing and processing. In the present paper, we focus on protease processing of OPA1. Results. We find that various mammalian cell types display a similar pattern of OPA1 isoforms [two L‐OPA1 (long isoforms of OPA1) and three S‐OPA1 (short isoforms of OPA1)] and that loss of the inner membrane potential, but not inhibition of oxidative phosphorylation or glycolysis, induces rapid and complete processing of L‐OPA1 to S‐OPA1. In isolated mitochondria, OPA1 processing was inhibited by heavy‐metal chelators, pointing to processing by a mitochondrial metalloprotease. The pattern of OPA1 isoforms and its processing kinetics were normal in mitochondria devoid of the serine protease PARL (presenilins‐associated rhomboid‐like protein) – the human orthologue of Pcp1/Rbd1 – and in cells from patients carrying homozygous mutations in SPG7 (spastic paraplegia type 7), a gene encoding the matrix‐oriented metalloprotease paraplegin. In contrast, OPA1 processing kinetics were delayed upon knock‐down of YME1L (human yme1‐like protein), an IMS‐oriented metalloprotease. OPA1 processing was also stimulated during apoptosis, but inhibition of this processing did not affect apoptotic release of OPA1 and cytochrome c. Finally, we show that all OPA1 isoforms interact with Mfn1 (mitofusin 1) and Mfn2 and that these interactions are not affected by dissipation of ΔΨm (inner mitochondrial membrane potential) or OPA1 processing. Conclusions. Metalloprotease‐mediated processing of OPA1 is modulated by the inner membrane potential and is likely to be mediated by the YME1L protease.  相似文献   

5.
Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase gamma. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.  相似文献   

6.
The dynamin-related GTPase, Mgm1p, is critical for the fusion of the mitochondrial outer membrane, maintenance of mitochondrial DNA (mtDNA), formation of normal inner membrane structures, and inheritance of mitochondria. Although there are two forms of Mgm1p, 100 and 90 kDa, their respective functions and the mechanism by which these two forms are produced are not clear. We previously isolated ugo2 mutants in a genetic screen to identify components involved in mitochondrial fusion [J. Cell Biol. 152 (2001) 1123]. In this paper, we show that ugo2 mutants are defective in PCP1, a gene encoding a rhomboid-related serine protease. Cells lacking Pcp1p are defective in the processing of Mgm1p and produce only the larger (100 kDa) form of Mgm1p. Similar to mgm1delta cells, pcp1delta cells contain partially fragmented mitochondria, instead of the long tubular branched mitochondria of wild-type cells. In addition, pcp1delta cells, like mgm1delta cells, lack mtDNA and therefore are unable to grow on nonfermentable medium. Mutations in the catalytic domain lead to complete loss of Pcp1p function. Similar to mgm1delta cells, the fragmentation of mitochondria and loss of mtDNA of pcp1delta cells were rescued when mitochondrial division was blocked by inactivating Dnm1p, a dynamin-related GTPase. Surprisingly, in contrast to mgm1delta cells, which are completely defective in mitochondrial fusion, pcp1delta cells can fuse their mitochondria after yeast cell mating. Our study demonstrates that Pcp1p is required for the processing of Mgm1p and controls normal mitochondrial shape and mtDNA maintenance by producing the 90 kDa form of Mgm1p. However, the processing of Mgm1p is not strictly required for mitochondrial fusion, indicating that the 100 kDa form is sufficient to promote fusion.  相似文献   

7.
Ishihara N  Fujita Y  Oka T  Mihara K 《The EMBO journal》2006,25(13):2966-2977
The dynamin-like GTPase OPA1, a causal gene product of human dominant optic atrophy, functions in mitochondrial fusion and inner membrane remodeling. It has several splice variants and even a single variant is found as several processed forms, although their functional significance is unknown. In yeast, mitochondrial rhomboid protease regulates mitochondrial function and morphology through proteolytic cleavage of Mgm1, the yeast homolog of OPA1. We demonstrate that OPA1 variants are synthesized with a bipartite-type mitochondrial targeting sequence. During import, the matrix-targeting signal is removed and processed forms (L-isoforms) are anchored to the inner membrane in type I topology. L-isoforms undergo further processing in the matrix to produce S-isoforms. Knockdown of OPA1 induced mitochondrial fragmentation, whose network morphology was recovered by expression of L-isoform but not S-isoform, indicating that only L-isoform is fusion-competent. Dissipation of membrane potential, expression of m-AAA protease paraplegin, or induction of apoptosis stimulated this processing along with the mitochondrial fragmentation. Thus, mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a DeltaPsi-dependent manner.  相似文献   

8.
OPA1 is a cause gene for autosomal dominant optic atrophy and possesses eight alternative splicing variants. Here, we identified two isoforms of OPA1 proteins in HeLa cells and examined their submitochondrial localization and complex formations. RT-PCR shows that HeLa cells mainly express isoforms 7 and 1 of OPA1. Since the third cleavage site is mainly utilized in HeLa cells, the predicted molecular masses of their processed proteins are consistent with the 93- and 88-kDa proteins. Biochemical examinations indicate that both of the OPA1 isoforms are present in the intermembrane space. Submitochondrial fractionation by sucrose density-gradient centrifugation shows that the 88-kDa protein predominantly associates with the mitochondrial outer membrane, on the contrary, the 93-kDa protein associates with the inner membrane. Gel filtration analysis indicates that they compose the different molecular mass complexes in mitochondria. These differences between two isoforms of OPA1 would suggest their crucial role involved in the mitochondrial membrane formation.  相似文献   

9.
Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage.  相似文献   

10.
In yeast, mitochondrial fusion requires Ugo1p and two GTPases, Fzo1p and Mgm1p. Ugo1p is anchored in the mitochondrial outer membrane with its N terminus facing the cytosol and C terminus in the intermembrane space. Fzo1p is also an outer membrane protein, whereas Mgm1p is located in the intermembrane space. Recent studies suggest that these three proteins form protein complexes that mediate mitochondrial fusion. Here, we show that the cytoplasmic domain of Ugo1p directly interacts with Fzo1p, whereas its intermembrane space domain binds to Mgm1p. We identified the Ugo1p-binding site in Fzo1p and demonstrated that Ugo1p-Fzo1p interaction is essential for the formation of mitochondrial shape, maintenance of mitochondrial DNA, and fusion of mitochondria. Although the GTPase domains of Fzo1p and Mgm1p regulate mitochondrial fusion, they were not required for association with Ugo1p. Furthermore, we found that Ugo1p bridges the interaction between Fzo1p and Mgm1p in mitochondria. Our data indicate that distinct regions of Ugo1p bind directly to Fzo1p and Mgm1p and thereby link these two GTPases during mitochondrial fusion.  相似文献   

11.
A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.  相似文献   

12.
Autosomal dominant optic atrophy (adOA) is the most common form of hereditary optic neuropathy. The majority of cases are associated with mutations in the OPA1 gene. A few cases of adOA are known to be associated with moderate progressive hearing loss. To gain insight into the pathogenesis of this hearing loss, we performed expression analyses of OPA1 in the rat auditory and vestibular organ. In cochlear tissue, several splice variants of OPA1 were detected, which are also expressed in retinal tissue. OPA1 mRNA and protein was found in the hair cells and ganglion cells of the cochlea and vestibular organ. In ganglion cells, OPA1 mRNA and protein was already detectable at birth, whereas in the organ of Corti OPA1 mRNA and protein was up-regulated after birth and reached mature-like expression level during the onset of hearing. Comparison of an antibody directed to the mitochondrial marker protein HSP60 with antibodies directed to different amino acid stretches of OPA1 revealed a sub-cellular distribution of OPA1 in areas of significant density of mitochondria. The data suggest that defects in OPA1 cause hearing disorders due to a progressing metabolic disturbance of hair and ganglion cells in the inner ear. Stefanie Bette and Ulrike Zimmermann contributed equally to this work.  相似文献   

13.
线粒体分裂、融合与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是高度动态变化的细胞器,其在细胞内不断分裂、融合并形成网状结构。线粒体的分裂和融合是由多种蛋白质精确调控完成的。Drp1/Dnm1p,Fis1/Fis1p,Caf4p和Mdv1p参与线粒体分裂的调控;Mfn1/2/Fzo1p控制线粒体外膜的融合,而Mgm1p/OPA1则参与线粒体内膜的融合。在细胞凋亡过程中线粒体片段化,网状结构被破坏,线粒体嵴发生重构,抑制这一过程可以部分抑制细胞色素c的释放和细胞凋亡。线粒体形态对于细胞维持正常生理代谢和机体发育起着重要的作用,一旦出现障碍会导致严重的疾病。  相似文献   

14.
Ingrid Leroy  Alan Diot 《FEBS letters》2010,584(14):3153-3157
Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.  相似文献   

15.
Mitochondrial morphology and inheritance of mitochondrial DNA in yeast depend on the dynamin-like GTPase Mgm1. It is present in two isoforms in the intermembrane space of mitochondria both of which are required for Mgm1 function. Limited proteolysis of the large isoform by the mitochondrial rhomboid protease Pcp1/Rbd1 generates the short isoform of Mgm1 but how this is regulated is unclear. We show that near its NH2 terminus Mgm1 contains two conserved hydrophobic segments of which the more COOH-terminal one is cleaved by Pcp1. Changing the hydrophobicity of the NH2-terminal segment modulated the ratio of the isoforms and led to fragmentation of mitochondria. Formation of the short isoform of Mgm1 and mitochondrial morphology further depend on a functional protein import motor and on the ATP level in the matrix. Our data show that a novel pathway, to which we refer as alternative topogenesis, represents a key regulatory mechanism ensuring the balanced formation of both Mgm1 isoforms. Through this process the mitochondrial ATP level might control mitochondrial morphology.  相似文献   

16.
OPA1 encodes a large GTPase related to dynamins, anchored to the mitochondrial cristae inner membrane, facing the intermembrane space. OPA1 haplo-insufficiency is responsible for the most common form of autosomal dominant optic atrophy (ADOA, MIM165500), a neuropathy resulting from degeneration of the retinal ganglion cells and optic nerve atrophy. Here we show that down-regulation of OPA1 in HeLa cells using specific small interfering RNA (siRNA) leads to fragmentation of the mitochondrial network concomitantly to the dissipation of the mitochondrial membrane potential and to a drastic disorganization of the cristae. These events are followed by cytochrome c release and caspase-dependent apoptotic nuclear events. Similarly, in NIH-OVCAR-3 cells, the OPA1 siRNA induces mitochondrial fragmentation and apoptosis, the latter being inhibited by Bcl2 overexpression. These results suggest that OPA1 is a major organizer of the mitochondrial inner membrane from which the maintenance of the cristae integrity depends. As loss of OPA1 commits cells to apoptosis without any other stimulus, we propose that OPA1 is involved in the cytochrome c sequestration and might be a target for mitochondrial apoptotic effectors. Our results also suggest that abnormal apoptosis is a possible pathophysiological process leading to the retinal ganglion cells degeneration in ADOA patients.  相似文献   

17.
The mitochondria are dynamic organelles that constantly fuse and divide. An equilibrium between fusion and fission controls the morphology of the mitochondria, which appear as dots or elongated tubules depending the prevailing force. Characterization of the components of the fission and fusion machineries has progressed considerably, and the emerging question now is what role mitochondrial dynamics play in mitochondrial and cellular functions. Its importance has been highlighted by the discovery that two human diseases are caused by mutations in the two mitochondrial pro-fusion genes, MFN2 and OPA1. This review will focus on data concerning the function of OPA1, mutations in which cause optic atrophy, with respect to the underlying pathophysiological processes.  相似文献   

18.
To characterize the molecular links between type-1 autosomal dominant optic atrophy (ADOA) and OPA1 dysfunctions, the effects of pathogenic alleles of this dynamin on mitochondrial morphology and apoptosis were analyzed, either in fibroblasts from affected individuals, or in HeLa cells transfected with similar mutants. The alleles were missense substitutions in the GTPase domain (OPA1(G300E) and OPA1(R290Q)) or deletion of the GTPase effector domain (OPA1(Delta58)). Fragmentation of mitochondria and apoptosis increased in OPA1(R290Q) fibroblasts and in OPA1(G300E) transfected HeLa cells. OPA1(Delta58) did not influence mitochondrial morphology, but increased the sensitivity to staurosporine of fibroblasts. In these cells, the amount of OPA1 protein was half of that in control fibroblasts. We conclude that GTPase mutants exert a dominant negative effect by competing with wild-type alleles to integrate into fusion-competent complexes, whereas C-terminal truncated alleles act by haplo-insufficiency. We present a model where antagonistic fusion and fission forces maintain the mitochondrial network, within morphological limits that are compatible with cellular functions. In the retinal ganglion cells (RGCs) of patients suffering from type-1 ADOA, OPA1-driven fusion cannot adequately oppose fission, thereby rendering them more sensitive to apoptotic stimuli and eventually leading to optic nerve degeneration.  相似文献   

19.
The morphology of mitochondria in mammalian cells is regulated by proteolytic cleavage of OPA1, a dynamin-like GTPase of the mitochondrial inner membrane. The mitochondrial rhomboid protease PARL, and paraplegin, a subunit of the ATP-dependent m-AAA protease, were proposed to be involved in this process. Here, we characterized individual OPA1 isoforms by mass spectrometry, and we reconstituted their processing in yeast to identify proteases involved in OPA1 cleavage. The yeast homologue of OPA1, Mgm1, was processed both by PARL and its yeast homologue Pcp1. Neither of these rhomboid proteases cleaved OPA1. The formation of small OPA1 isoforms was impaired in yeast cells lacking the m-AAA protease subunits Yta10 and Yta12 and was restored upon expression of murine or human m-AAA proteases. OPA1 processing depended on the subunit composition of mammalian m-AAA proteases. Homo-oligomeric m-AAA protease complexes composed of murine Afg3l1, Afg3l2, or human AFG3L2 subunits cleaved OPA1 with higher efficiency than paraplegin-containing m-AAA proteases. OPA1 processing proceeded normally in murine cell lines lacking paraplegin or PARL. Our results provide evidence for different substrate specificities of m-AAA proteases composed of different subunits and reveal a striking evolutionary switch of proteases involved in the proteolytic processing of dynamin-like GTPases in mitochondria.  相似文献   

20.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号