首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that females of socially monogamous species obtain indirect benefits (good or compatible genes) from extra-pair mating behaviour has received enormous attention but much less generally accepted support. Here we ask whether selection for adult survival and fecundity or sexual selection contribute to indirect selection of the extra-pair mating behaviour in socially monogamous coal tits (Periparus ater). We tracked locally recruited individuals with known paternity status through their lives predicting that the extra-pair offspring (EPO) would outperform the within-pair offspring (WPO). No differences between the WPO and EPO recruits were detected in lifespan or age of first reproduction. However, the male WPO had a higher lifetime number of broods and higher lifetime number of social offspring compared with male EPO recruits, while no such differences were evident for female recruits. Male EPO recruits did not compensate for their lower social reproductive success by higher fertilization success within their social pair bonds. Thus, our results do not support the idea that enhanced adult survival, fecundity or within-pair fertilization success are manifestations of the genetic benefits of extra-pair matings. But we emphasize that a crucial fitness component, the extra-pair fertilization success of male recruits, has yet  相似文献   

2.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

3.
Traits under relaxed selection are expected to become reduced or disappear completely, a process called vestigialization. In parthenogenetic populations, traits historically involved in sexual reproduction are no longer under selection and potentially subject to such reduction. In Leptopilina clavipes, thelytokous (parthenogenetic) populations are infected by Wolbachia bacteria. Arrhenotokous populations do not harbor Wolbachia. When antibiotics are applied to infected females, they are cured from their infection and males arise. Such males are capable of producing offspring with uninfected females, but with lower fertilization success than sexual males. This can be attributed to the lack of selection on male fertility in thelytokous lines. In this study we used this variation in L. clavipes male fertility to determine the genetic basis of this trait. Males from cured thelytokous populations were crossed to females from uninfected populations. Using AFLP markers, a genetic linkage map was generated, consisting of five linkage groups and spanning a total distance of 219.9 cM. A single QTL of large effect (explaining 46.5% of the phenotypic variance) was identified for male fertility, which we call male fertility factor (mff). We discuss possible mechanisms underlying the effect of mff, as well as mechanisms involved in vestigialization of traits involved in sexual reproduction.  相似文献   

4.
Unisexual reproduction is a widespread phenomenon in invertebrates and lower vertebrates. If a former sexual reproducing species becomes parthenogenetic, we expect traits that were subject to sexual selection to diminish. The bushcricket Poecilimon intermedius is one of the few insect species with obligate but diploid parthenogenetic reproduction. We contrasted characters that are involved in mating in a sexually sibling species with the identical structures in the parthenogenetic P. intermedius. Central for sexual communication are male songs, while receptive females approach the males phonotactically. Compared to its sister-species P. ampliatus, the morphology of the hearing organs (acoustic spiracle, crista acustica) and the function of hearing (acoustic threshold) are reduced in P. intermedius. Nonetheless, hearing is clearly maintained in the parthenogenetic females. Natural selection by acoustic hunting bats, pleiotropy or a developmental trap may explain the well maintained hearing function.  相似文献   

5.
Considerable work in evolutionary biology has focused on the question of why sex persists. Both advantages to sex and constraints limiting a return to asexual reproduction are hypothesized to maintain sex once it evolves. Developmental constraints would limit asexual reproduction from a sexual species if it were difficult for females to switch from making eggs that do not develop without fertilization to making zygotes that are capable of developing in the absence of fertilization. Nauphoeta cinerea is an ovoviviparous cockroach in which some females are capable of switching from a sexual mode of reproduction to an asexual mode when isolated from males. Yet, while facultative parthenogenesis can occur in individuals, few females make the switch. Thus, this cockroach provides an ideal system for examining the potential role of developmental constraints in maintaining sex. Here we compare the cytogenetics and embryonic development of sexual and parthenogenetic offspring in N. cinerea. We find that deviations from normal ploidy levels are associated with abnormal development. All viable N. cinerea embryos exhibit typically hemimetabolous insect embryogenesis. Although there is no variation among embryos in development within a sexually produced clutch, we see extreme variation in asexually derived clutches. These results suggest that developmental constraints limit the success of asexual reproduction in this facultatively parthenogenetic cockroach. Our data further suggest that the specific constraint occurs in the switch from a meiotic mode of reproduction requiring fertilization to diploid zygotes that develop in the absence of fertilization.  相似文献   

6.
Although size at maturity and size and number of offspring are life-history traits widely studied in sexual and parthenogenetic reproduction, there is no such research on animals reproducing asexually without the involvement of gametes. Here we present an individual-based model in combination with experiments to study the clonal growth of Stylaria lacustris, an oligochaete reproducing through fission. We studied the effect of individual size at fission and fission ratio on clone fitness. Our results show that in benign environments without predators, fitness is higher when small worms produce small offspring. Then we included size-specific sublethal predation and found that the fitness of the clone is maximized when parental worms start fission at a large size and produce large descendants intercalated in the middle of the parental worm's body. These results agree with empirical findings. Furthermore, the results of our own laboratory experiment revealed that when S. lacustris is exposed to chemical alarm signals from injured conspecifics, it alters its life history in the same direction as predicted by the model. Our findings suggest that the effect of size-specific sublethal predation is similar to the effect of size-specific lethal predation because both modes of predation result in size-dependent prey mortality.  相似文献   

7.
Androgenesis is the production of an offspring containing exclusively the nuclear genome of the fathering male via the maternal eggs. This unusual mating system is generally considered a male trait, giving to androgenetic males a substantial fitness advantage over their sexually reproducing relatives. We here provide the first empirical study of the evolutionary outcomes of androgenesis in a haplo-diploid organism: the invasive ant Wasmannia auropunctata. Some of the populations of this species have a classical haplo-diploid sexual mating system. In other populations, females and males are produced through parthenogenesis and androgenesis, respectively, whereas workers are produced sexually. We conducted laboratory reciprocal-cross experiments with reproductive individuals from both types of populations and analysed their progenies with genetic markers, to determine the respective contribution of males and females to the production of androgenetic males. We found that androgenesis was a parthenogenetic female trait. A population genetic study conducted in natura confirmed the parthenogenetic female origin of androgenesis, with the identification of introgression events of sexual male genotypes into androgenetic/parthenogenetic lineages. We argue that by producing males via androgenesis, parthenogenetic queen lineages may increase and/or maintain their adaptive potential, while maintaining the integrity of their own genome, by occasionally acquiring new male genetic material and avoiding inbreeding depression within the sexually produced worker cast.  相似文献   

8.
Developmental instability is particularly pronounced in parthenogenetic strains of Drosophila mercatorum. All parthenogenetically produced eggs in a given strain have the same genotype, but even when reared in the same environment, only approximately 5% of the eggs initiating development ever reach adulthood. A sexual analogue of a parthenogenetic strain was created to investigate the basis of this developmental instability. The two strains have identical genotypes (except for the Y chromosome in males of the sexual strain) and differ only in mode of reproduction. The sexual strain had a much lower rate of developmental instability than the parthenogenetic strain, suggesting that the instability is caused by the mode of reproduction per se and is not due to homozygosity, disruption of coadapted gene complexes, or any other feature of the parthenogenetic genome. The increased rate of abortion with parthenogenetic reproduction is caused by a proportional increase in the normal panoply of errors that occur in sexual reproduction but at a much lower rate. Attempts to establish other sexual analogues of laboratory parthenogenetic strains revealed different male sterility factors within several parthenogenetic genomes that could potentially act to prevent hybridization with sexually reproducing ancestors during the incipient stages in the evolution of an entirely parthenogenetic lineage.  相似文献   

9.
Parthenogenesis, including facultative parthenogenesis, is common among orthopteroid insects. We investigated the fitness associated with sexual and asexual reproduction within a population of the facultatively parthenogenetic cockroach Nauphoeta cinerea. There is significantly reduced fitness for females reproducing parthenogenetically compared to sexually. Fewer than half of all females can reproduce parthenogenetically. In addition, tenfold fewer offspring are produced by parthenogenesis due to reductions in both the number of offspring produced per clutch and the number of clutches produced. Development and brooding of sexually or parthenogenetically produced first instar nymphs does not differ, although the production of the first parthenogenetic clutch is delayed relative to the first sexually produced clutch. The fitness of parthenogens is also lower than the fitness of sexually produced offspring. Parthenogens are less viable than sexually produced offspring even in the benign conditions of the laboratory. Development to adulthood of parthenogens is slower. Fewer parthenogens survive to adulthood and the adult life span of parthenogens is reduced. Individuals produced by parthenogenetic reproduction are unlikely to reproduce parthenogenetically themselves. Finally, parthenogenetically produced females produce fewer offspring by sexual reproduction than do sexually produced females. Since parthenogenetic reproduction is apomictic in N. cinerea and parthenogens are diploid, we suggest that asexual reproduction is developmentally constrained. Once meiosis has evolved, returning to a mitotic mode of reproduction may be difficult. Nauphoeta cinerea offers a system for testing how asexuality is constrained as modes of reproduction can be compared within a facultative parthenogen.  相似文献   

10.
Worldwide, parthenogenetic reproduction has evolved many times in the stick insects (Phasmatidae). Many parthenogenetic stick insects show the distribution pattern known as geographic parthenogenesis, in that they occupy habitats that are at higher altitude or latitude compared with their sexual relatives. Although it is often assumed that, in the short term, parthenogenetic populations will have a reproductive advantage over sexual populations; this is not necessarily the case. We present data on the distribution and evolutionary relationships of sexual and asexual populations of the New Zealand stick insect, Clitarchus hookeri. Males are common in the northern half of the species’ range but rare or absent elsewhere, and we found that most C. hookeri from putative‐parthenogenetic populations share a common ancestor. Female stick insects from bisexual populations of Clitarchus hookeri are capable of parthenogenetic reproduction, but those insects from putative‐parthenogenetic populations produced few offspring via sexual reproduction when males were available. We found similar fertility (hatching success) in mated and virgin females. Mated females produce equal numbers of male and female offspring, with most hatching about 9–16 weeks after laying. In contrast, most eggs from unmated females took longer to hatch (21–23 weeks), and most offspring were female. It appears that all C. hookeri females are capable of parthenogenetic reproduction, and thus could benefit from the numerical advantage this yields. Nevertheless, our phylogeographic evidence shows that the majority of all‐female populations over a wide geographic area originate from a single loss of sexual reproduction.  相似文献   

11.
Across sexually reproducing species, males and females are in conflict over the control of reproduction. At the heart of this conflict in a number of taxa is male harassment of females for mating opportunities and female strategies to avoid this harassment. One neglected consequence that may result from sexual harassment is the disruption of important social associations. Here, we experimentally manipulate the degree of sexual harassment that wild female guppies (Poecilia reticulata) experience by establishing replicated, semi-natural pools with different population sex ratios. We quantify the effects of sexual harassment on female social structure and the development of social recognition among females. When exposed to sexual harassment, we found that females had more disparate social networks with limited repeated interactions when compared to females that did not experience male harassment. Furthermore, females that did not experience harassment developed social recognition with familiar individuals over an 8-day period, whereas females that experienced harassment did not, an effect we suggest is due to disruption of association patterns. These results show that social network structure and social recognition can be affected by sexual harassment, an effect that will be relevant across taxonomic groups and that we predict will have fitness consequences for females.  相似文献   

12.
In spite of the predicted genetic and ecological costs of sex, most natural populations maintain sexual reproduction, even those capable of facultative parthenogenesis. Unfertilized eggs from natural populations of Drosophila mercatorum occasionally develop into viable adults, but obligately parthenogenetic populations are unknown in this species. To evaluate the microevolutionary forces that both favor and constrain the evolution of parthenogenesis in D. mercatorum, we have measured parthenogenetic rates across a natural, sexually reproducing population and characterized the life-history changes that accompany the transition from sexual to parthenogenetic reproduction in laboratory strains. A highly significant difference in parthenogenetic rate was found between two populations in close geographic proximity, with increased rate found with lower population density. Laboratory strains of parthenogenetic females suffered increased mortality and reduced egg viability relative to their virgin counterparts from a sexual strain. Lifetime egg production was similar across all strains, but a shift in peak egg production to an earlier age also occurred. The combination of these life-history traits resulted in a higher net reproductive value for sexual females, but because they also had a longer generation time, intrinsic rate of increase was not as dramatically different from parthenogenetic females. In environments with high early mortality, there may be no fitness disadvantage to parthenogenesis, but the predicted ecological advantage of a twofold increase in intrinsic rate of increase was not realized. These results support the theory of Stalker (1956) that parthenogenesis is favored in environments in which sexual reproduction is difficult or impossible.  相似文献   

13.
Facultative reproductive strategies that incorporate both sexual and parthenogenetic reproduction should be optimal, yet are rarely observed in animals. Resolving this paradox requires an understanding of the economics of facultative asexuality. Recent work suggests that switching from parthenogenesis to sex can be costly and that females can resist mating to avoid switching. However, it remains unclear whether these costs and resistance behaviors are dependent on female age. We addressed these questions in the Cyclone Larry stick insect, Sipyloidea larryi, by pairing females with males (or with females as a control) in early life prior to the start of parthenogenetic reproduction, or in mid‐ or late life after a period of parthenogenetic oviposition. Young females were receptive to mating even though mating in early life caused reduced fecundity. Female resistance to mating increased with age, but reproductive switching in mid‐ or late life did not negatively affect female survival or offspring performance. Overall, mating enhanced female fitness because fertilized eggs had higher hatching success and resulted in more adult offspring than parthenogenetic eggs. However, female fecundity and offspring viability were also enhanced in females paired with other females, suggesting a socially mediated maternal effect. Our results provide little evidence that switching from parthenogenesis to sex at any age is costly for S. larryi females. However, age‐dependent effects of switching on some fitness components and female resistance behaviors suggest the possibility of context‐dependent effects that may only be apparent in natural populations.  相似文献   

14.
Organisms reproducing by cyclical parthenogenesis combine the benefits of both sexual and asexual reproduction within the same life cycle. Few studies have examined the evolution of variation in the pattern of investment in parthenogenetic compared to sexual reproduction. Seven clones of Daphnia pulex (Crustacea: Cladocera) varying in allocation to sexual reproduction, as measured by the production of males, were raised in isolation and together in a microcosm to study the pattern of sexual reproduction and the effect of this variation on clone fitness. Sex allocation for clones raised together a microcosm was similar to their allocation when raised in isolation, suggesting a genetic basis to the variation. Three clones showed a cost of producing males that lead to their extinction after about 30 days due to the lack of females required for the clones to persist by parthenogenetic reproduction. The remaining four clones persisted until the end of the 72-day experiment. Clones with little or no allocation to males showed no increased allocation to sexual females. The seven clones showed a greater variation in estimated fitness through male and female function than in total estimated fitness. The clone with the greatest total fitness gained most of its fitness through male function but also had a relatively high fitness through female function. Although one clone produced only females it had the next highest fitness. The three clones that went extinct because of a high investment in males had estimated fitness as high as some clones that persisted in the microcosm because of a higher investment in parthenogenetic reproduction. The similarity in total fitness among clones suggests that Daphnia pulex populations in temporary habitats maintain a sex polymorphism where different genotypes vary-in functional gender ranging from female to primarily male.  相似文献   

15.
Despite the wide use of the tubificid oligochaete Tubifex tubifex in eco-toxicological studies, the reproductive strategy adopted by the species, that can reasonably be assumed to be the key to its ecological success, is still not well investigated. This study reports on breeding experiments analysed by allozyme markers (Pgi, Pgm, and Idh), accompanied by a study of the sperm production in the species, with the aim to: (1) clarify the type of uniparental reproduction adopted by the species, (2) test the hypothesis that uniparental reproduction is reversible, (3) investigate the occurrence of biparental reproduction in laboratory cultures. Studies of parent-offspring comparison at polymorphic allozyme loci showed parthenogenetic reproduction and maintenance of asexuality in the parthenogenetic individuals. A cross-breeding test performed with couples made up of randomly assorted individuals, whose genotype combinations were suitable for discriminating between sexual and asexual reproduction, failed to show biparental reproduction in laboratory cultures: T. tubifex always reproduced parthenogenetically. Unexpectedly, spermiogenetic analysis indicated that both kinds of sperm produced by the species (eusperm and parasperm) were differentiated in individuals raised either in cohort cultures or in isolation (first, second, and third parthenogenetic generations), with a similar pattern of sperm production correlated to the sexual stage. Interestingly, there was no avoidance of mating in any of the collective cultures analysed. Concomitance between parthenogenetic reproduction and a "normal" male functionality, which is typical of a sexually reproducing species, could be justified by a mixed reproductive strategy or a pseudogamy process occurring in T. tubifex. However, several aspects of the reproductive behaviour of the species deserve further investigation.  相似文献   

16.
Extravagant male ornaments expressed during reproduction are almost invariably assumed to be sexually selected and evolve through competition for mating opportunities. Yet in species where male reproductive success depends on the defence of offspring, male ornaments could also evolve through social competition for offspring survival. However, in contrast to female ornaments, this possibility has received little attention in males. We show that a male ornament that is traditionally assumed to be sexually selected—the red nuptial coloration of the three-spined stickleback—is under stronger selection for offspring survival than for mating success. Males express most coloration during parenting, when they no longer attract females, and the colour correlates with nest retention and hatching success but not with attractiveness to females. This contradicts earlier assumptions and suggests that social selection for offspring survival rather than for sexual selection for mating success is the main mechanism maintaining the ornament in the population. These results suggest that we should consider other forms of social selection beyond sexual selection when seeking to explain the function and evolution of male ornaments. An incorrect assignment of selection pressures could hamper our understanding of evolution.  相似文献   

17.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

18.
Males can typically increase their lifetime reproductive success by mating with multiple females. However, recent studies across a broad range of species have demonstrated physiological constraints on male multiple mating. In this study, we investigate male mating capacity in Extatosoma tiaratum, a facultative parthenogenetic phasmatid. Sperm limitation is thought to be one factor favouring the evolution and maintenance of parthenogenetic reproduction, but studies on male mating ability in facultative parthenogenetic species are extremely rare. To explore whether male mating success varies with mating history, we provided males with weekly mating opportunities with different females throughout their lives. We then observed mating success, and the variation in ejaculate size and quality within each mating. We showed that most, but not all, males can mate multiply, however the amount of ejaculate produced is variable and depends upon male body mass and mating history.  相似文献   

19.
An enduring problem in evolutionary biology is the near ubiquity of sexual reproduction despite the inherent cost of transmitting only half the parent's genes to progeny. Queens of some ant species circumvent this cost by using selectively both sexual reproduction and parthenogenesis: workers arise from fertilized eggs, while new queens are produced by parthenogenesis. We show that queens of the ant Cataglyphis cursor maximize the transmission rate of their genes by regulating the proportion of fertilized and parthenogenetic eggs laid over time. Parthenogenetic offspring are produced in early spring, when workers raise the brood into sexuals. After the mating period, queens lay mostly fertilized eggs that will be reared as the non-reproductive caste.  相似文献   

20.
Parthenogenetic reproduction is taxonomically widespread and occurs through various cytological mechanisms, which have different impact on the genetic variation of the offspring. Extatosoma tiaratum is a facultatively parthenogenetic Australian insect (Phasmatodea), in which females oviposit continuously throughout their adult lifespan irrespective of mating. Fertilized eggs produce sons and daughters through sexual reproduction and unfertilized eggs produce female offspring via parthenogenesis. Here, we developed novel microsatellite markers for E. tiaratum and characterized them by genotyping individuals from a natural population. We then used the microsatellite markers to infer the cytological mechanism of parthenogenesis in this species. We found evidence suggesting parthenogenesis in E. tiaratum occurs through automixis with terminal fusion, resulting in substantial loss of microsatellite heterozygosity in the offspring. Loss of microsatellite heterozygosity may be associated with loss of heterozygosity in fitness related loci. The mechanism of parthenogenetic reproduction can therefore affect fitness outcomes and needs to be considered when comparing costs and benefits of sex versus parthenogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号