首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate segregation of sister chromatids at the metaphase to anaphase transition in Saccharomyces cerevisiae is regulated by the activity of the anaphase-promoting complex or cyclosome (APC/C). In the event of spindle damage or monopolar spindle attachment, the spindle checkpoint is activated and inhibits APC/C activity towards the anaphase inhibitor Pds1p, resulting in a cell cycle arrest at metaphase. We have identified a novel allele of a gene for an APC/C subunit, cdc16-183 , in S. cerevisiae. cdc16-183 mutants arrest at metaphase at 37°C, and are supersensitive to the spindle-damaging agent nocodazole, which activates the spindle checkpoint, at lower temperatures. This supersensitivity to nocodazole cannot be explained by impairment of the spindle checkpoint pathway, as cells respond normally to spindle damage with a stable metaphase arrest and high levels of Pds1p. Despite showing metaphase arrest at G2/M at 37°C, cdc16-183 mutants are able to perform tested G1 functions normally at this temperature. This is the first demonstration that a mutation in a core APC/C subunit can result in a MAD2-dependent arrest at the restrictive temperature. Our results suggest that the cdc16-183 mutant may have a novel APC/C defect(s) that mimics or activates the spindle checkpoint pathway.Communicated by C. P. Hollenberg  相似文献   

2.
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.  相似文献   

3.
《Cellular signalling》2014,26(10):2217-2222
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.  相似文献   

4.
The Xenopus homologue of Drosophila Fizzy and budding yeast CDC20 has been characterized. The encoded protein (X-FZY) is a component of a high molecular weight complex distinct from the APC/cyclosome. Antibodies directed against FZY were produced and shown to prevent calmodulin-dependent protein kinase II (CaMKII) from inducing the metaphase to anaphase transition of spindles assembled in vitro in Xenopus egg extracts, and this was associated with suppression of the degradation of mitotic cyclins. The same antibodies suppressed M phase-promoting factor (MPF)-dependent activation of the APC/cyclosome in interphase egg extracts, although they did not appear to alter the pattern or extent of MPF-dependent phosphorylation of APC/cyclosome subunits. As these phosphorylations are thought to be essential for APC/cyclosome activation in eggs and early embryos, we conclude that at least two events are required for MPF to activate the APC/cyclosome, allowing both chromatid segregation and full degradation of mitotic cyclins. The first one, which does not require FZY function, is the phosphorylation of APC/cyclosome subunits. The second one, that requires FZY function (even in the absence of MAD2 protein and when the spindle assembly checkpoint is not activated) is not yet understood at its molecular level.  相似文献   

5.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.  相似文献   

6.
The anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase, is responsible for the transition from metaphase to anaphase and the exit from mitosis. The anaphase promoting complex subunit 10 (APC10), a subunit of the APC/C, executes a vital function in substrate recognition. However, no research has reported the connection between APC10 and cancer until now. In this study, we uncovered a novel, unprecedented role of APC10 in tumor progression, which is independent of APC/C. First, aberrant increase of APC10 expression was validated in non-small cell lung cancer (NSCLC) cells and tissues, and the absence of APC10 repressed cell proliferation and migration. Of great interest, we found that APC10 inhibition induced cell cycle arrest at the G0/G1 phase and reduced the expression of the APC/C substrate, Cyclin B1; this finding is different from the conventional concept of the accumulation of Cyclin B1 and cell cycle arrest in metaphase. Further, APC10 was found to interact with glutaminase C (GAC), and the inhibition of APC10 weakened glutamine metabolism and induced excessive autophagy. Taken together, these findings identify a novel function of APC10 in the regulation of NSCLC tumorigenesis and point to the possibility of APC10 as a new target for cancer therapy.  相似文献   

7.
Background: Exit from mitosis is a tightly regulated event. This process has been studied in greatest detail in budding yeast, where several activities have been identified that cooperate to downregulate activity of the cyclin-dependent kinase (CDK) Cdc28 and force an exit from mitosis. Cdc28 is inactivated through proteolysis of B-type cyclins by the multisubunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C) and inhibition by the cyclin-dependent kinase inhibitor (CKI) Sic1. In contrast, the only mechanism known to be essential for CDK inactivation during mitosis in higher eukaryotes is cyclin destruction.Results: We now present evidence that the Drosophila CKI Roughex (Rux) contributes to exit from mitosis. Observations of fixed and living embryos show that metaphase is significantly longer in rux mutants than in wild-type embryos. In addition, Rux overexpression is sufficient to drive cells experimentally arrested in metaphase into interphase. Furthermore, rux mutant embryos are impaired in their ability to overcome a transient metaphase arrest induced by expression of a stable cyclin A. Rux has numerous functional similarities with Sic1. While these proteins share no sequence similarity, we show that Sic1 inhibits mitotic Cdk1-cyclin complexes from Drosophila in vitro and in vivo.Conclusions: Rux inhibits Cdk1-cyclin A kinase activity during metaphase, thereby contributing to exit from mitosis. To our knowledge, this is the first mitotic function ascribed to a CKI in a multicellular organism and indicates the existence of a novel regulatory mechanism for the metaphase to anaphase transition during development.  相似文献   

8.
The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.  相似文献   

9.
The anaphase-promoting complex/cyclosome (APC/C) is a conserved multisubunit ubiquitin ligase required for the degradation of key cell cycle regulators. The APC/C becomes active at the metaphase/anaphase transition and remains active during G(1) phase. One mechanism linked to activation of the APC/C is phosphorylation. Although many sites of mitotic phosphorylation have been identified in core components of the APC/C, the consequence of any individual phosphorylation event has not been elucidated in vivo. In this study, we show that Hcn1 is an essential core component of the fission yeast APC/C and is critical for maintaining complex integrity. Moreover, Hcn1 is a phosphoprotein in vivo. Phosphorylation of Hcn1 occurs at a single Cdk1 site in vitro and in vivo. Mutation of this site to alanine, but not aspartic acid, compromises APC/C function and leads to a specific defect in the completion of cell division.  相似文献   

10.
K Ishii  K Kumada  T Toda    M Yanagida 《The EMBO journal》1996,15(23):6629-6640
Ubiquitin-dependent proteolysis is required for the onset of anaphase. We show that protein dephosphorylation by protein phosphatase 1 (PP1) is also essential for initiating anaphase in fission yeast. PP1 may directly or indirectly regulate the 20S cyclosome/APC (anaphase-promoting complex) required for anaphase-promoting proteolysis. Using anti-phosphopeptide antibodies, PP1 is shown to be dephosphorylated at the C-terminus, upon the onset of anaphase, for reactivation. sds23+, a novel gene, is a multicopy suppressor for mutations in PP1 and the 20S cyclosome/APC, implying that the gene dosage increase can relieve the requirement for PP1 and the cyclosome/APC for the onset of anaphase. The sds23+ gene is not essential for cell viability, but a mutant with the gene deleted cannot form colonies at 22 and 36 degrees C. In the sds23 deletion mutant, the progression of anaphase and cytokinesis is retarded and cell shape is aberrant. These defects are overcome by plasmids carrying the genes encoding subunits of the 20S cyclosome/APC or PP1. These results demonstrate functions other than promoting anaphase for the components of the 20S cyclosome/APC and also a close functional relationship of Sds23 with PP1 and 20S cyclosome/APC.  相似文献   

11.
In C. elegans, mutants in the anaphase-promoting complex or cyclosome (APC/C) exhibit defects in germline proliferation, the formation of the vulva and male tail, and the metaphase to anaphase transition of meiosis I. Oocytes lacking APC/C activity can be fertilized but arrest in metaphase of meiosis I and are blocked from further development. To examine the cell cycle and developmental consequences of reducing but not fully depleting APC/C activity, we analyzed defects in embryos and larvae of mat-1/cdc-27 mutants grown at semi-permissive temperatures. Hypomorphic embryos developed to the multicellular stage but were slow to complete meiosis I and displayed aberrant meiotic chromosome separation. More severely affected embryos skipped meiosis II altogether and exhibited striking defects in meiotic exit. These latter embryos failed to produce normal eggshells or establish normal asymmetries prior to the first mitotic division. In developing larvae, extended M-phase delays in late-dividing cell lineages were associated with defects in the morphogenesis of the male tail. This study reveals the importance of dosage-specific mutants in analyzing molecular functions of a ubiquitously functioning protein within different cell types and tissues, and striking correlations between specific abnormalities in cell cycle progression and particular developmental defects.  相似文献   

12.
The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.  相似文献   

13.
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.  相似文献   

14.
Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.  相似文献   

15.
Stein KK  Nesmith JE  Ross BD  Golden A 《Genetics》2010,186(4):1285-1293
The anaphase promoting complex/cyclosome (APC/C) mediates the metaphase-to-anaphase transition by instructing the ubiquitination and turnover of key proteins at this stage of the cell cycle. We have recovered a gain-of-function allele in an APC5 subunit of the anaphase promoting complex/cyclosome. This finding led us to investigate further the role of APC5 in Caenorhabditis elegans, which contains two APC5 paralogs. We have shown that these two paralogs, such-1 and gfi-3, are coexpressed in the germline but have nonoverlapping expression patterns in other tissues. Depletion of such-1 or gfi-3 alone does not have a notable effect on the meiotic divisions; however, codepletion of these two factors results in meiotic arrest. In sum, the two C. elegans APC5 paralogs have a redundant function during the meiotic divisions.  相似文献   

16.
The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.  相似文献   

17.
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1’s functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.  相似文献   

18.
Accurate segregation of sister chromatids during mitosis is necessary to avoid the aneuploidy found in many cancers. The spindle checkpoint, which monitors the metaphase to anaphase transition, has been shown to be defective in cancers with chromosomal instability. This checkpoint regulates the anaphase-promoting complex or cyclosome (APC/C), a cell cycle ubiquitin ligase regulating among other things sister chromatid separation. We have previously investigated the mouse Apc1 protein (previously also called Tsg24), the largest subunit of the APC/C. We have now sequenced a full-length human APC1 cDNA, mapped its chromosomal location, and analysed its intron-exon boundaries. We have also investigated the RNA and protein expression of the Apc1 and other APC/C components in normal and cancer cells and the relative occurrence of expressed sequence tags (ESTs) representing APC subunits from different tissues. The different APC/C subunits are expressed in most tissues and cell types at fairly constant levels relative to each other, suggesting that they perform their functions as part of a complex. A difference from this pattern is however seen for the APC6, which in some cases is more strongly expressed, suggesting a special function for this protein in certain tissues and cell types.  相似文献   

19.
Ubiquitin-mediated proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for sister chromatid separation and the mitotic exit. Like ubiquitylation, protein modification with the small ubiquitin-related modifier SUMO appears to be important during mitosis, because yeast cells impaired in the SUMO-conjugating enzyme Ubc9 were found to be blocked in mitosis and defective in cyclin degradation. Here, we analysed the role of SUMOylation in the metaphase/anaphase transition and in APC/C-mediated proteolysis in Saccharomyces cerevisiae. We show that cells depleted of Ubc9 or Smt3, the yeast SUMO protein, mostly arrested with undivided nuclei and with high levels of securin Pds1. This metaphase block was partially relieved by a deletion of PDS1. The absence of Ubc9 or Smt3 also resulted in defects in chromosome segregation. Temperature-sensitive ubc9-2 mutants were delayed in proteolysis of Pds1 and of cyclin Clb2 during mitosis. The requirement of SUMOylation for APC/C-mediated degradation was tested more directly in G1-arrested cells. Both ubc9-2 and smt3-331 mutants were defective in efficient degradation of Pds1 and mitotic cyclins, whereas proteolysis of unstable proteins that are not APC/C substrates was unaffected. We conclude that SUMOylation is needed for efficient proteolysis mediated by APC/C in budding yeast.  相似文献   

20.
The anaphase promoting complex/cyclosome (APC/C) and its cofactors CDH1 and CDC20 regulate the accumulation/degradation of CCNB1 during mouse oocyte meiotic maturation. Generally, the CCNB1 degradation mediated by APC/CCDC20 activity is essential for the transition from metaphase to anaphase. Here, by using siRNA and mRNA microinjection, as well as time‐lapse live imaging, we showed that Septin 9, which mediates the binding of septins to microtubules, is critical for oocyte meiotic cell cycle progression. The oocytes were arrested at the MI stage and the connection between chromosome kinetochores and spindle microtubules was disrupted after Septin 9 depletion. As it is well known that spindle assembly checkpoint (SAC) is an important regulator of the MI‐AI transition, we thus detected the SAC activity and the expression of CDC20 and CCNB1 which were the downstream proteins of SAC during this critical period. The signals of Mad1 and BubR1 still remained on the kinetochores of chromosomes in Septin 9 siRNA oocytes at 9.5 h of in vitro culture when most control oocytes entered anaphase I. The expression of CCNB1 did not decrease and the expression of CDC20 did not increase at 9.5 h in Septin 9 siRNA oocytes. Microinjection of mRNA encoding Septin 9 or CDC20 could partially rescue MI arrest caused by Septin 9 siRNA. These results suggest that Septin 9 is required for meiotic MI‐AI transition by regulating the kinetochore‐microtubule connection and SAC protein localization on kinetochores, whose effects are transmitted to APC/CCDC20 activity and CCNB1 degradation in mouse oocytes.

Mechanism of Septin 9 depletion‐caused metaphase I (MI)/anaphase I (AI) transition failure during meiotic maturation in mouse oocytes. Septin 9 may play an important role in regulating the MI/AI transition by influencing the stability of kinetochore‐microtubule connections in mouse oocytes. In wild types, Septin 9 allows CCNB1 degradation, which in turn causes MI‐to‐AI transition and the first polar body extrusion. Conversely, depletion of Septin 9 disrupts CCNB1 degradation by sustaining spindle assembly checkpoint (SAC) activation and downregulating APC/CCDC20 activity. Sustained SAC activation is caused by unstable connections between kinetochores and microtubules in Septin 9‐depleted oocytes. Accordingly, Septin 9‐depleted oocytes arrested at MI stage and did not extrude the first polar body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号