首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

2.
3.
Treatment of quiescent human embryonic lung fibroblastic cells (TIG-3) with 10 nM epidermal growth factor (EGF) resulted in 4-6-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein 2 (MAP2) on serine and threonine residues in vitro. The half-maximal activation of the kinase activity occurred within 5 min after EGF treatment, and the maximal level was attained at 15 min. Casein and histone were very poor substrates for this EGF-stimulated MAP2 kinase activity. The activation of the kinase activity persisted after brief dialysis. Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+. The activated MAP2 kinase activity was recovered in flow-through fractions on phosphocellulose column chromatography, while kinase activities that phosphorylate 40 S ribosomal protein S6 (S6 kinase activities) were mostly retained on the column and eluted at 0.5 M NaCl. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, phorbol esters (12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate), and fresh fetal calf serum also induced activation of the MAP2 kinase in the quiescent TIG-3 cells. The activated MAP2 kinase activity in cells stimulated by platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, 12-O-tetradecanoylphorbol 13-acetate, phorbol 12,13-dibutyrate, or fetal calf serum was almost completely inhibited by 2 microM Ca2+, like the EGF-stimulated kinase. In addition, MAP2 phosphorylated by the kinase activated by different stimuli gave very similar phosphopeptide mapping patterns. These results suggest that several growth factors, phorbol esters, and serum activate a common, Ca2+-inhibitable protein kinase which is distinct from S6 kinase in quiescent human fibroblasts.  相似文献   

4.
5.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system.  相似文献   

6.
Li P  Matsunaga K  Yamakuni T  Ohizumi Y 《Life sciences》2002,71(15):1821-1835
Picrosides I and II caused a concentration-dependent (> 0.1 microM) enhancement of basic fibroblast growth factor (bFGF, 2 ng/ml)-, staurosporine (10 nM)- and dibutyryl cyclic AMP (dbcAMP, 0.3 mM)-induced neurite outgrowth from PC12D cells. PD98059 (20 microM), a potent mitogen-activated protein (MAP) kinase kinase inhibitor, blocked the enhancement of bFGF (2 ng/ml)-, staurosporine (10 nM)- or dbcAMP (0.3 mM)-induced neurite outgrowth by picrosides, suggesting that picrosides activate MAP kinase-dependent signaling pathway. However, PD98059 did not affect the bFGF (2 ng/ml)-, staurosporine (10 nM)- and dbcAMP (0.3 mM)-induced neurite outgrowth in PC12D cells, indicating the existence of two components in neurite outgrowth induced by bFGF, staurosporine and dbcAMP, namely the MAP kinase-independent and the masked MAP kinase-dependent one. Furthermore, picrosides-induced enhancements of the bFGF-action were markedly inhibited by GF109203X (0.1 microM), a protein kinase C inhibitor. The expression of phosphorylated MAP kinase was markedly increased by bFGF (2 ng/ml) and dbcAMP (0.3 mM), whereas that was not enhanced by staurosporine (10 nM). Picrosides had no effect on the phosphorylation of MAP kinase induced by bFGF or dbcAMP and also unaffected it in the presence of staurosporine. These results suggest that picrosides I and II enhance bFGF-, staurosporine- or dbcAMP-induced neurite outgrowth from PC12D cells, probably by amplifying a down-stream step of MAP kinase in the intracellular MAP kinase-dependent signaling pathway. Picrosides I and II may become selective pharmacological tools for studying the MAP kinase-dependent signaling pathway in outgrowth of neurites induced by many kinds of neuritogenic substances including bFGF.  相似文献   

7.
An involvement of protein tyrosine kinase in the transduction of the signals initiated by nerve growth factor (NGF) was investigated. A tyrosine kinase inhibitor, herbimycin, inhibited neurite outgrowth of rat pheochromocytoma PC12 cells induced by NGF but not that by dibutyryl-cAMP. Herbimycin and genistein blocked NGF-dependent activation of ras p21 whose essential function in neuronal differentiation has been reported. These observations suggested that tyrosine kinase activity is involved in the signaling pathways. K-252a, by contrast, inhibited NGF-induced but not EGF-dependent activation of ras p21. Tyrosine kinase activity of gp140trk, a constituent of NGF receptor, is activated by NGF for much a longer period compared to the activation of EGF receptor autokinase activity by EGF. We further demonstrated that autophosphorylation of gp140trk is selectively inhibited by K-252a.  相似文献   

8.
K-252a, a protein kinase inhibitor isolated from the culture broth of Nocardiopsis sp., inhibits the nerve growth factor (NGF)-stimulated phosphorylation of microtubule-associated protein 2 (MAP2) and Kemptide (synthetic Leu-Arg-Arg-Ala-Ser-Leu-Gly) by blocking the activation of two independent kinases in PC12 cells: MAP2/pp250 kinase and Kemptide kinase. The NGF-stimulated activation of these kinases is inhibited in a dose-dependent manner following treatment of the cells with K-252a. Although these kinases also are activated by epidermal growth factor (EGF) and 12-O-tetradecanoyl-phorbol 13-acetate, K-252a has no inhibitory effect when these agents are used. Half-maximal inhibition of the activation of both kinases was observed at 10-30 nM K-252a. K-252a was shown to directly inhibit the activity of MAP2/pp250 kinase and Kemptide kinase when added to the phosphorylation reaction mixture in vitro; however, half-maximal inhibition under these conditions was observed at greater than or equal to 50 nM K-252a. These data suggest that K-252a exerts its effects at a step early in the cascade of events following NGF binding. The effects of K-252a are similar to those reported for 5'-S-methyladenosine (MTA) and other methyltransferase inhibitors. Treatment of PC12 cells with MTA inhibited NGF-, but not EGF-mediated activation of MAP2/pp250-kinase (Ki greater than 500 microM). MTA, when added to the phosphorylation reaction mixture in vitro, directly inhibited kinase activity (Ki = 50 microM), suggesting that the effects of MTA may be the result of its action on protein kinases rather than methyltransferases.  相似文献   

9.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

10.
Tests have been made of the action of the methyltransferase inhibitors 5'-S-methyl adenosine, 5'-S-(2-methyl-propyl)-adenosine, and 3-deaza- adenosine +/- L-homocysteine thiolactone, on nerve growth factor (NGF)- dependent events in the rat pheochromocytoma line PC12. Each of these agents inhibited NGF-dependent neurite outgrowth at concentrations of the order of millimolar. Slow initiation of neurite outgrowth over several days and more rapid regeneration of neurites (congruent to 1 d) were blocked, as was the priming mechanism necessary for genesis of neurites. The inhibitions were reversible in that PC12 cells maintained for several days in the presence of inhibitors grew neurites normally after washout of these agents. Other NGF-dependent responses of the PC12 line (i.e., induction of ornithine decarboxylase activity [over 4 h], enhancement of tyrosine hydroxylase phosphorylation [over 1 h], and rapid changes in cell surface morphology [30 s onward]) were inhibited by each of the agents. In contrast, corresponding epidermal growth factor-dependent responses in ornithine decarboxylase activity, phosphorylation, and cell surface morphology were not blocked, but instead either unaffected or enhanced, by the methylation inhibitors. These inhibitors did not act by blockade of binding of NGF to high- or low-affinity cell surface receptors, though they partially inhibited internalization of [125I]NGF. The inhibition of rapidly-induced NGF- dependent events and the differential inhibition of responses to NGF and epidermal growth factor imply that the methyltransferase inhibitors specifically block one of the first steps in the mechanistic pathway for NGF.  相似文献   

11.
Abstract: The protein kinase inhibitors K-252a and K-252b have been shown earlier to block the actions of nerve growth factor and other neurotrophins and, at lower concentrations, to selectively potentiate neurotrophin-3 actions. In the present study we show that K-252a, but not K-252b, enhances epidermal growth factor (EGF)- and basic fibroblast growth factor (bFGF)-induced neurite outgrowth of PC12 cells at higher concentrations than required for neurotrophin inhibition. In parallel, tyrosine phosphorylation of extracellular signal-regulated kinases (Erks) elicited by EGF or bFGF was also increased in the presence of K-252a, and this signal was prolonged for 6 h. EGF- and bFGF-induced phosphorylation of phospholipase C-γ1 were not changed. The effect of K-252a on Erks was resistant to chronic treatment with phorbol ester, indicating that protein kinase C is not involved in this potentiation. In partial contrast to the actions of K-252a, the neurotrophin-3-potentiating effect of K-252b was accompanied by an increase in tyrosine phosphorylation of the Erks and of phospholipase C-γ1. Finally, although K-252a alone did not induce neurite outgrowth or tyrosine phosphorylation of Erks or phospholipase C-γ1, this compound alone stimulated phosphatidylinositol hydrolysis. Our findings identify activities of K-252a besides the direct interaction with neurotrophin receptors and suggest that a K-252a-sensitive protein kinase or phosphatase might be involved in signal transduction for EGF and bFGF. Our results are further compatible with the hypothesis that sustained activation of Erks may be important in PC12 differentiation.  相似文献   

12.
Some of the effects of nerve growth factor (NGF) may be mediated by changes in protein phosphorylation. We have identified a protein kinase from PC-12 cells that catalyzes the phosphorylation of pig brain microtubule-associated protein (MAP)-2 in vitro. This activity is stimulated 2-4-fold in extracts from cells treated with NGF or epidermal growth factor (EGF). The partial purification and characterization of this MAP kinase indicate that it is distinct from previously described NGF-stimulated protein kinases. The NGF-stimulated kinase activity is unaffected by direct addition to the assay of the heat-stable cAMP-dependent kinase peptide inhibitor, staurosporine, or K-252A, is slightly stimulated by heparin and is inhibited by sodium fluoride and calcium ions. Treatment of cells with NGF increases the activity of the kinase within 2 min. The activity declines after 10 min, and a second phase of activation is observed at 20-30 min. Comparison of its behavior on gel permeation and sucrose density gradients indicates a molecular mass in the range of 40,000 daltons. The kinase activity is specific for ATP as substrate with a Km of 12 microM. Although the pathway of activation of MAP kinase by NGF is unknown, the stimulation can be reversed by treatment of the enzyme with alkaline phosphatase, suggesting that activation involves phosphorylation of the kinase itself. The properties and hormone sensitivity of the PC-12 MAP kinase suggest that it is similar to the previously identified, growth factor-sensitive MAP kinase from 3T3-L1 adipocytes.  相似文献   

13.
Two signaling pathways, phosphoinositide 3-kinase (PI-3k)/Akt and Ras/MAPK, are major effectors triggered by nerve growth factor (NGF). Rac1, Cdc42 and GSK-3beta are reported to be targets of PI-3k in the signal transduction for neurite outgrowth. Immediately after NGF was added, broad ruffles were observed temporarily around the periphery of PC12 cells prior to neurite growth. As PC12D cells are characterized by a very rapid extension of neurites in response to various agents, the signaling pathways described above were studied in relation to the NGF-induced formation of ruffles and outgrowth of neurites. Wortmannin, an Akt inhibitor (V), and GSK-3beta inhibitor (SB425286) suppressed the neurite growth in NGF-treated cells, but not in dbcAMP-treated cells. The outgrowth of neurites induced by NGF but not by dbcAMP was inhibited with the expression of mutant Ras. But upon the expression of dominant-negative Rac1, cells often extended protrusions, incomplete neurites, lacking F-actin. Intact neurites were observed in cells with dominant-negative Cdc42. These results suggest that NGF-dependent neurite outgrowth occurs via a mechanism involving activation of the Ras/PI-3K/Akt/GSK-3beta pathway, while dbcAMP-dependent neurite growth might be induced in a distinct manner. However, inhibitors for GSK-3beta and PI-3k (wortmannin) did not suppress the NGF-dependent formation of ruffles. In addition, the formation of ruffles was not inhibited by the expression of mutant Ras. On the other hand, it was suppressed by the expression of dominant-negative Rac1 or Cdc42. These results suggest that the NGF-induced ruffling requires activation of Rac1 and Cdc42, but does not require Ras, PI-3k, Akt and GSK-3beta. Taken together, the NGF-dependent formation of ruffles might not require Ras/PI-3k/Akt/GSK-3beta, but these pathways might contribute to the formation of intact neurites due to combined actions including Rac1.  相似文献   

14.
15.
We have previously found and characterized a mitogen-activated, serine/threonine-specific protein kinase that specifically phosphorylates microtubule-associated protein 2 (MAP2) in vitro, which we call here MAP2 kinase [Hoshi, M., Nishida, E. & Sakai, H. (1988) J. Biol. Chem. 263, 5396-5401; Hoshi, M., Nishida, E. & Sakai, H. (1989) Eur. J. Biochem. 184, 477-486]. In this study, we have found another serine/threonine-specific protein kinase that is activated by various mitogens. The activated kinase utilized microtubule-associated protein 1B (MAP1B) as the major substrate in vitro, so we tentatively call it MAP1B kinase (M1BK). M1BK was maximally activated 20-30 min after treatment of quiescent rat fibroblastic 3Y1 cells with epidermal growth factor (EGF), while MAP2 kinase was maximally activated within 5-10 min of EGF treatment. The EGF-activated M1BK was eluted at about 0.15 M NaCl on a DEAE-cellulose column, while the activated MAP2 kinase was eluted at about 0.1 M NaCl under the conditions used. The EGF-activated M1BK was eluted as a single peak just after the activated MAP2 kinase on an HPLC gel-filtration column. Histone, casein and ribosomal protein S6 were very poor substrates for the M1BK, while MAP2 and myelin basic protein were moderate substrates. The M1BK activity in cell extracts was inhibited by Ca2+, glycerol 2-phosphate and Zn2+, and slightly enhanced by heparin. These data suggested that M1BK is distinct from previously described mitogen-activated kinases such as MAP2 kinase, casein kinase II and S6 kinase. Pretreatment with cycloheximide or puromycin did not block the M1BK activation by EGF. Furthermore, incubation of the EGF-activated M1BK with acid phosphatase inactivated the kinase activity. Therefore, M1BK may be activated by phosphorylation in EGF-treated cells. In addition to EGF, 12-O-tetradecanoylphorbol 13-acetate, platelet-derived growth factor and insulin-like growth factor-I also induced the activation of M1BK in quiescent cells.  相似文献   

16.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

17.
Mitogen-activated protein (MAP) kinase is a 42-kDa serine/threonine-specific protein kinase that requires phosphorylation on both tyrosine and threonine residues for activity. This enzyme is rapidly and transiently activated in quiescent cells after addition of various agonists, including insulin, epidermal growth factor, platelet-derived growth factor, and phorbol esters. We show here that addition of the growth factors thrombin or basic fibroblast growth factor to CCL39 fibroblasts rapidly induces tyrosine phosphorylation of the p42 MAP kinase protein and concomitantly stimulates MAP kinase enzymatic activity. To elucidate the signaling pathways utilized in this activation, we took advantage of the sensitivity of CCL39 cells to the toxin of bordetella pertussis, which ADP-ribosylates two Gi proteins in this cell system. We show that pretreatment of cells with the toxin inhibited thrombin stimulation of MAP kinase by greater than 75% but had no detectable effect on the stimulation induced by basic fibroblast growth factor. We also demonstrate that these two growth factors that synergize for mitogenicity are able to cooperate in activation of MAP kinase and that this synergism is partially sensitive to pertussis toxin. Finally, we describe a 44-kDa protein, the tyrosine phosphorylation of which appears to be coregulated with p42 MAP kinase. We conclude that p42 MAP kinase (and the pp44 protein) are at or are downstream from a point of convergence of two different receptor-induced signaling pathways and might well play a key role in integrating those signals.  相似文献   

18.
19.
The signaling pathway that triggers morphological differentiation of PC12 cells is mediated by extracellular signal-regulated kinase (ERK), the classic mitogen-activated protein (MAP) kinase. However, mediators of the pathway downstream of ERK have not been identified. We show here that phospholipase D2 (PLD2), which generates the pleiotropic signaling lipid phosphatidic acid (PA), links ERK activation to neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. Increased expression of wild type PLD2 (WT-PLD2) dramatically elongated neurites induced by NGF stimulation or transient expression of the active form of MAP kinase-ERK kinase (MEK-CA). The response was activity-dependent, because it was inhibited by pharmacological suppression of the PLD-mediated PA production and by expression of a lipase-deficient PLD2 mutant. Furthermore, PLD2 was activated by MEK-CA, whereas NGF-stimulated PLD2 activation and hypertrophic neurite extension were blocked by an MEK-specific inhibitor. Taken together, these results provide evidence that PLD2 functions as a downstream signaling effector of ERK in the NGF signaling pathway, which leads to neurite outgrowth by PC12 cells.  相似文献   

20.
PC12 rat pheochromocytoma cells respond to nerve growth factor (NGF) protein by shifting from a chromaffin-cell-like phenotype to a neurite-bearing sympathetic-neuron-like phenotype. Comparison of the phosphoprotein patterns of the cells by SDS PAGE after various times of NGF treatment revealed a high molecular weight (Mr greater than or approximately 300,000) band whose relative intensity progressively increased beyond 2 d of NGF exposure. This effect was blocked by inhibitors of RNA synthesis and did not require neurite outgrowth or substrate attachment. The enhancement by NGF occurred in serum-free medium and was not produced by exposure to epidermal growth factor, insulin, dibutyryl cAMP, or dexamethasone. Several different types of experiments indicated that this phosphoprotein corresponds to a high molecular weight (HMW) microtubule-associated protein (MAP). These included cross-reactivity with antiserum against brain HMW MAPs, co-cycling with microtubules and co-assembly with tubulin in the presence of taxol. The affected species also co-migrated in SDS PAGE gels with brain MAP1 and, unlike MAP2, precipitated upon boiling. Studies with [35S]-methionine-labeled PC12 cells indicated that at least a significant proportion of this effect of NGF was due to increased levels of protein rather than to mere enhancement of phosphorylation. On the basis of the apparent effects of MAPs on the formation and stabilization of microtubules and of the importance of microtubules in production and maintenance of neurites, it is proposed that induction of a HMW MAP may be one of the steps in the mechanism whereby NGF promotes neurite outgrowth. Furthermore, these findings may lead to an understanding of the role of MAP1 in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号