首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

2.
3.
We found novel vesicles derived from rough endoplasmic reticulum (ER) in rice endosperm. The novel vesicles had characteristic structures different from that of the ER-derived protein body type I and the Golgi-derived dense vesicles. Immunocytochemical analysis revealed that the novel vesicles are derived directly from the aggregates of vacuolar storage proteins in the rough ER. In addition, BiP, an ER-resident molecular chaperone, was localized in the novel vesicles, but also in protein storage vacuoles (PSVs). These results suggest that the novel vesicles mediate transport of vacuolar storage proteins directly from the ER to PSVs in rice endosperm.  相似文献   

4.
An abundant, highly conserved tonoplast protein in seeds   总被引:23,自引:6,他引:17       下载免费PDF全文
We have isolated the membranes of the protein storage vacuoles (protein bodies) from Phaseolus vulgaris cotyledons and purified an integral membrane protein with Mr 25,000 (TP 25). Antiserum to TP 25 recognizes an abundant polypeptide in the total cell extracts of many different seeds (monocots, dicots, and a gymnosperm), and specifically labels the vacuolar membranes of thin-sectioned soybean embryonic axes and cotyledons. TP 25 was not found in the starchy endosperm of barley and wheat or the seed coats of bean but was present in all seed parts examined that consist of living cells at seed maturity. The abundance of TP 25 was not correlated with the amount of storage protein in seed tissue, and the protein was not found in leaves that accumulate leaf storage protein. On the basis of its abundance, evolutionary conservation, and distribution in the plant, we propose that TP 25 may play a role in maintaining the integrity of the tonoplast during the dehydration/rehydration sequence of seeds.  相似文献   

5.
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.  相似文献   

6.
A novel mechanism of silicon uptake   总被引:4,自引:0,他引:4  
Neumann D  De Figueiredo C 《Protoplasma》2002,220(1-2):0059-0067
Summary.  Crystal-like structures in vacuoles, precipitates in the cytoplasm and on the tonoplast membrane have been found to store remarkable amounts of Si in a number of higher plants. In most of the cases the final storage product is a SiO2 gel. Accumulation inside the cells presumes a membrane and cytoplasm passage, driven by unknown transporters. Beside this uptake into the cytoplasm, Si-accumulating species possess a mechanism that does not involve a membrane and cytoplasm passage. Unusual small invaginations comprising the two membranes, plasmalemma and tonoplast, which enclose a small border of cytoplasm, were observed. The same cells contained vacuolar vesicles surrounded by two membranes, obviously derived from the invaginations. By energy-dispersive X-ray analysis and electron spectroscopic imaging, Si was shown in the invaginations and vacuolar vesicles. This novel endocytotic process allows the uptake of condensed, higher-molecular-weight Si compounds. In Zn hyperaccumulators, frequently SiO2 precipitates were found in different cell compartments. Such plants showed the same invaginations and vacuolar vesicles, but Zn, colocalized with Si, was detected in these structures. Electron energy loss spectra confirmed the assumption that Zn-silicate is present in the vesicles. In the vacuoles the unstable Zn-silicate is degraded, forming SiO2 precipitates, while the released Zn is bound to an unknown partner. Received January 22, 2002; accepted July 2, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Federal Republic of Germany. Abbreviations: EELS electron energy loss spectroscopy; EDX energy-dispersive analysis of X-rays; ESI electron spectroscopic imaging.  相似文献   

7.
A vacuolar cysteine proteinase, designated SH-EP, is expressed in the cotyledon of germinated Vigna mungo seeds and is responsible for the degradation of storage proteins. SH-EP is a characteristic vacuolar proteinase possessing a COOH-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In this work, immunocytochemical analysis of the cotyledon cells of germinated V. mungo seeds was performed using seven kinds of antibodies to identify the intracellular transport pathway of SH-EP from ER to protein storage vacuoles. A proform of SH-EP synthesized in ER accumulated at the edge or middle region of ER where the transport vesicle was formed. The vesicle containing a large amount of proSH-EP, termed KV, budded off from ER, bypassed the Golgi complex, and was sorted to protein storage vacuoles. This massive transport of SH-EP via KV was thought to mediate dynamic protein mobilization in the cotyledon cells of germinated seeds. We discuss the possibilities that the KDEL sequence of KDEL-tailed vacuolar cysteine proteinases function as an accumulation signal at ER, and that the mass transport of the proteinases by ER-derived KV-like vesicle is involved in the protein mobilization of plants.  相似文献   

8.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

9.
10.
The ultrastructure of the mature embryo sac, the early stages of the embryo and endosperm development of common radish, Raphanur sativus was examined. The embryo sac consists of 7 cells with antipodal ceils disappeared when it matures. The egg cell is highly polarized. The wall surrounded the chalazal end of the egg cell is incomplete, showing a discontinuous structure of an electron dense material deposited intermittently in the space between the two plasma membranes of the egg cell and central cell. The synergid has filiform apparatus, rich in organelles and well developed ER. The two polar nuclei of the central cell are located near the egg apparatus because of the big vacuole, and the finger-like protrutions from the cell wall, as that in synergid, are found. The first division of the zygote occurs 4–5 days after pollination and the development of the embryo follows the Onagrad type, and the structure of the embryo cell is quite simple for containing small quantity of ER, plastids and other organelles. The primary endosperm nucleus deviates 2 days earlier than zygote. The endosperm is of nuclear-endosperm containing chloroplasts, well developed ER, and plentiful of mitochondria and golgi bodies and the nodule-like aggregation in both. the chalazal and micropylar ends of the embryo sac during the early development appeared, and cell wall starting at the micropylar end by freely-growing forms about 16 days after pollination.  相似文献   

11.
Cytological and histological studies on postfertilization development of ovules were carried out in six facultatively apomictic Citrus cultivars. At the time of anthesis, adventive embryo initial cells (AEICs) were detected mainly in the cell layers of the nucellus around the chalazal half of the embryo sac. During the approximately 40 days rest period of the AEICs after fertilization, rapid cell division and enlargement in the endosperm and the chalazal half of the nucellus resulted in the split of AEICs into several separated areas forming the micropylar, lateral and chalazal islands surrounding the enlarging embryo sac. Both in diploid seeds with triploid endosperm and triploid seeds with pentaploid endosperm, the AEICs located in the micropylar half successfully developed into adventive embryos. In diploid seeds, almost all AEICs located in the chalazal half did not develop beyond the initial-celled stage, while in the triploid seeds, those located in the chalazal half occasionally developed into cotyledonary embryos. In seeds with aborted endosperm, the AEICs located in the chalazal half often developed into cotyledonary embryos. The chalazal expiants from normal seeds produced a large number of embryos in vitro. Four results can be summarized from these studies on adventive embryogenesis as follows: 1) All AEICs are initiated prior to anthesis. 2) Whether or not the AEICs successfully developed into adventive embryos is dependent upon their position in the seed. 3) The farther the AEICs are located from the micropylar end, the more adventive embryogenesis is suppressed by endosperm. 4) The degree of adventive embryogenesis in the chalazal half is affected by time and extent of malfunction of the endosperm. Under natural conditions, these regulatory systems of adventive embryogenesis contribute to high production of zygotic seedlings in apomictic Citrus species and cultivars.  相似文献   

12.
Seeds contain storage compounds, from various carbohydrates to proteins and lipids, which are synthesized during seed development. For the purposes of many plant researches or commercial applications, developing promoter systems expressing specifically in seeds or in particular constituents or tissues/compartments of seeds are indispensable. To screen genes dominantly or specifically expressed in seed tissues, we analyzed Arabidopsis ATH1 microarray data open to the public. Thirty-two candidate genes were selected and their expressions in seed tissues were confirmed by RT-PCR. Finally, seven genes were selected for promoter analysis. The promoters of seven genes were cloned into pBI101 vector and transformed into Arabidopsis to assay histochemical β-glucuronidase (GUS) activity. We found that Pro-at3g03230 promoter drove GUS expression in a chalazal endosperm, Pro-at4g27530:GUS expressed in both chalazal endosperm and embryo, Pro-at4g31830 accelerated GUS expression both in radicle and procambium, Pro-at5g10120 and Pro-at5g16460 drove GUS expression uniquely in embryo, Pro-at5g53100:GUS expressed only in endosperm, and Pro-at5g54000 promoted GUS expression in both embryo and inner integument. These promoters can be used for expressing any genes in specific seed tissues for practical application.  相似文献   

13.
Plant storage proteins are synthesized and stored in different compartments of the plant endomembrane system. Developing maize seeds synthesize and accumulate prolamin (zein) and 11S globulin (legumin-1) type proteins, which are sequestered in the endoplasmic reticulum (ER) lumen and storage vacuoles, respectively. Immunofluorescence studies showed that the lumenal chaperone BiP was not randomly distributed within the ER in developing maize endosperm but concentrated within the zein-containing protein bodies. Analysis of the spatial distribution of RNAs in maize endosperm sections by in situ RT-PCR showed that, contrary to the conclusions made in an earlier study [Kim et al. (2002) Plant Cell 14: 655-672], the zein and legumin-1 RNAs are not symmetrically distributed on the ER but, instead, targeted to specific ER subdomains. RNAs coding for 22 kDa alpha-zein, 15 kDa beta-zein, 27 kDa gamma-zein and 10 kDa delta-zein were localized to ER-bounded zein protein bodies, whereas 51 kDa legumin-1 RNAs were distributed on adjacent cisternal ER proximal to the zein protein bodies. These results indicate that the maize storage protein RNAs are targeted to specific ER subdomains in developing maize endosperm and that RNA localization may be a prevalent mechanism to sort proteins within plant cells.  相似文献   

14.
In order to identify marker lines expressing GUS in various endosperm compartments and at different developmental stages, a collection of Arabidopsis thaliana (L.) Heynh. promoter trap lines were screened. The screen identified 16 lines displaying GUS-reporter gene expression in the endosperm, embryo and other seed organs. The distinctive patterns of GUS expression in these lines provide molecular markers for most cell compartments in the endosperm of Arabidopsis seeds at all developmental stages, and represent a valuable research tool for characterizing present and future Arabidopsis seed mutants. GUS expression patterns of these 16 lines are presented here. One line showed chalazal endosperm-specific GUS activity at the heart stage of embryo development. In six lines embryo-specific GUS activity was detected. Six lines exhibited GUS activity predominantly in the endosperm and embryo while two lines showed strong GUS activity in all seed organs. In one line GUS activity was detected in integuments and syncytial endosperm, while the GUS activity at the cotyledonary stage of the embryo was seed coat-specific. In addition, two funiculus markers and two silique markers expressed in the abscission zone and the guard cells are also presented.  相似文献   

15.
We compared the subcellular distribution of native and artificial reticuloplasmins in endosperm, callus, and leaf tissues of transgenic rice (Oryza sativa) to determine the distribution of these proteins among endoplasmic reticulum (ER) and post-ER compartments. The native reticuloplasmin was calreticulin. The artificial reticuloplasmin was a recombinant single-chain antibody (scFv), expressed with an N-terminal signal peptide and the C-terminal KDEL sequence for retrieval to the ER (scFvT84.66-KDEL). We found that both molecules were distributed in the same manner. In endosperm, each accumulated in ER-derived prolamine protein bodies, but also in glutelin protein storage vacuoles, even though glutelins are known to pass through the Golgi apparatus en route to these organelles. This finding may suggest that similar mechanisms are involved in the sorting of reticuloplasmins and rice seed storage proteins. However, the presence of reticuloplasmins in protein storage vacuoles could also be due to simple dispersal into these compartments during protein storage vacuole biogenesis, before glutelin deposition. In callus and leaf mesophyll cells, both reticuloplasmins accumulated in ribosome-coated vesicles probably derived directly from the rough ER.  相似文献   

16.
We identify new organelles associated with the vacuolar system in plant cells. These organelles are defined biochemically by their internal content of three integral membrane proteins: a chimeric reporter protein that moves there directly from the ER; a specific tonoplast intrinsic protein; and a novel receptor-like RING-H2 protein that traffics through the Golgi apparatus. Highly conserved homologues of the latter are expressed in animal cells. In a developmentally regulated manner, the organelles are taken up into vacuoles where, in seed protein storage vacuoles, they form a membrane-containing crystalloid. The uptake and preservation of the contents of these organelles in vacuoles represents a unique mechanism for compartmentalization of protein and lipid for storage.  相似文献   

17.
Typical organelles for protein storage occur in seeds, protein bodies are found in haploid, diploid or triploid tissues and are single membrane bound. In some plants, they exhibit inclusions (globoid and crystalloid), but not in Gramineae endosperm or in Leguminosae cotyledons. A relationship between species and protein body ultrastructure can be put forward. The chemical composition is based mainly on storage proteins and phytic acid but, hydrolytic enzymes(protease and phytase), cations and ribonucleic acids are also present. Other minor biochemical components include oxalic acid, carbohydrates (excluding starch) and lipids. The locations of the storage proteins, enzymes and phytin are described. Protein body ontogeny during seed maturation has given rise to much controversy: are they plastidic or vacuolar? Recent studies on the location of proteosynthesis show that protein bodies are probably synthesized in endoplasmic reticulum lumen and that the Golgi apparatus plays an important role in storage protein synthesis. During germination protein bodies swell and fuse, giving rise to the cell central vacuole, while the integrity of the membrane is maintained. Protein bodies may be considered as being an example of tonoplast origin from endo-plasmic reticulum.  相似文献   

18.
Cytological and histological studies of seeds from three facultative apomictic Citrus cultivars show that adventive embryos develop, as a rule, from the first few cell layers of the nucellus adjacent to the embryo sac in the micropylar half and occasionally from the chalazal end. The adventive embryos initiated in nucellar tissue away from the embryo sac and most of those initiated from the chalazal end of the nucellus do not develop beyond the one-celled stage. When two or more embryos are developing in the same seed, the successful development of a given embryo depends on its location in relation to access to nutrients from the endosperm. The presence of a zygote and triploid endosperm in seeds with adventive embryos, the abortion of seed when endosperm degenerates, and the lack of seed set without pollination indicate that pollination and fertilization are essential for in vivo adventive embryogenesis.  相似文献   

19.
Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein‐specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant‐negative mutants of Rab GTPases.  相似文献   

20.
王秀玲  高新起 《广西植物》2002,22(3):242-245
西瓜胚乳细胞衰退过程中 ,质膜、液泡膜突起、形成体积较大的囊泡 ,内质网断裂形成体积较小的囊泡 ;细胞质和细胞核降解形成电子致密的碎片沿细胞壁分布 ;细胞壁在衰退过程逐渐变薄 ,由于部分区域分解而使整个壁呈波浪型 ,细胞降解后的物质可直接穿越薄壁处或通过宽约 5 0 nm的胞间连丝向近胚端的胚乳细胞转移。胚乳与珠心组织分界壁 -胚囊壁上有发达的壁内突 ,有利于珠心组织内的物质向胚乳内转运 ;胚乳发育早期与胚共有的壁上内外两侧均有胼胝质沉积 ,壁上无外连丝型的胞间连丝存在 ,胚乳发育后期共有壁上的胼胝质消失 ,胚乳细胞降解物可穿越共有壁进入胚细胞内。实验结果表明西瓜胚乳在发育后期对胚的发育具有重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号